Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником Российский патент 2018 года по МПК F02G1/04 F02B71/04 F02B63/04 

Описание патента на изобретение RU2659598C1

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области энергомашиностроения.

УРОВЕНЬ ТЕХНИКИ

Ближайший прототип заявленного изобретения патент РФ №2550228, «Электрический генератор переменного тока с двигателем Стерлинга».

ЦЕЛЬ ИЗОБРЕТЕНИЯ

Основной недостаток устройства по патенту РФ №2550228 состоит в том, что частота колебаний рабочего поршня, соединенного со штоком, напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Следовательно, эффективность преобразования кинетической энергии рабочего поршня и штока в электроэнергию также напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Цель заявленного изобретения состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Способ преобразования тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником состоит в следующем. Тепловая энергия от топки, лучистая энергия солнца и т.д., подводится к теплообменнику 1 и нагревает газ, например гелий, во внутренней полости теплообменника 1. Система управления отслеживает величину температуры и давления газа в теплообменнике 1. В момент времени, когда температура и давление газа в теплообменнике 1 достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускной клапан цилиндра 2. Максимальная величина давления и температуры газа в теплообменнике 1 выбирается из соображения прочностных характеристик материала теплообменника 1. Газ из теплообменника 1 через впускной клапан цилиндра 2 поступает в рабочую (правую по рисунку) полость поршня 3. Под действием газа поршень 3 начинает движение из исходной точки движения в конечную точку движения. Из компрессорной (левой) полости поршня 3 газ через обратный клапан пневмоаккумулятора 4 заряжает пневмоаккумулятор 5. Магнитный поток статорного магнита линейного электрогенератора 6 (статорный магнит может быть постоянным магнитом или электромагнитом) замыкается через якорь линейного электрогенератора 7. В результате движения якоря линейного электрогенератора 7 площадь поверхности якоря линейного электрогенератора 7 и примыкающей к якорю линейного электрогенератора 7 площади поверхности статорного магнита линейного электрогенератора 6 уменьшается. Соответственно изменяется магнитный поток в якоре линейного электрогенератора 7 и статорном магните линейного электрогенератора 6, и в катушке линейного электрогенератора 8 генерируется импульс электроэнергии. В момент времени прибытия поршня 3 в конечную (левую) крайнюю точку движения система управления закрывает впускной клапан цилиндра 2 и открывает выпускной клапан цилиндра 9. Якорь линейного электрогенератора 7 притягивается к противоположному полюсу статорного магнита линейного электрогенератора 6. В результате поршень 3 движется в исходное для генерирования очередного импульса электроэнергии положение.

Отработавший газ из рабочей полости поршня 3 через открытый выпускной клапан цилиндра 9 вытесняется в холодильник 10, а через обратный клапан цилиндра 11 газ из холодильника 10 засасывается в компрессорную полость поршня 3. Одновременно система управления открывает клапан пневмоаккумулятора 12 и газ из пневмоаккумулятора 5 поступает в теплообменник 1, в котором происходит очередной цикл нагрева газа до температуры и давления, при которой температура и давление газа в теплообменнике 1 достигнет введенного в систему управления предела максимальной величины давления и температуры газа. После чего цикл генерирования импульса электроэнергии повторяется. Таким образом, обеспечивается максимальная эффективность преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику 1.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником включающем теплообменник, систему управления, впускной клапан цилиндра, поршень, обратный клапан пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якорь линейного электрогенератора, катушку линейного электрогенератора, выпускной клапан цилиндра, холодильник, обратный клапан цилиндра и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускной клапан цилиндра, газ из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня, под действием газа поршень начинает движение из исходной точки движения в конечную точку движения, из компрессорной полости поршня газ через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора, в результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается, соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра, якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора, поршень с якорем движется в исходное для генерирования очередного импульса электроэнергии положение, отработавший газ из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в холодильник, а через обратный клапан цилиндра газ из холодильника засасывается в компрессорную полость поршня. Одновременно система управления открывает клапан пневмоаккумулятора и газ из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева газа до температуры и давления, при которой температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, после чего цикл генерирования импульса электроэнергии повторяется.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Затраты на НИОКР свободнопоршневого энергомодуля с линейным электрогенератором и теплообменником не могут существенно отличаться от таковых при проектировании классического ДВС.

ГРАФИЧЕСКИЙ МАТЕРИАЛ

Фигура. Принципиальная схема свободнопоршневого энергомодуля с линейным электрогенератором и теплообменником.

1 - теплообменник; 2 - впускной клапан цилиндра; 3 - поршень; 4 - обратный клапан пневмоаккумулятора; 5 - пневмоаккумулятор; 6 - статорный магнит линейного электрогенератора; 7 - якорь линейного электрогенератора; 8 - катушка линейного электрогенератора; 9 - выпускной клапан цилиндра; 10 - холодильник; 11 - обратный клапан цилиндра; 12 - клапан пневмоаккумулятора.

Похожие патенты RU2659598C1

название год авторы номер документа
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником 2017
  • Рыбаков Анатолий Александрович
RU2654689C1
Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором и теплообменником 2017
  • Рыбаков Анатолий Александрович
RU2659908C1
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором 2017
  • Рыбаков Анатолий Александрович
RU2655684C1
Способ преобразования тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором и теплообменником 2017
  • Рыбаков Анатолий Александрович
RU2652092C1
Способ предотвращения ударов поршня о стенки цилиндра одноцилиндровой свободнопоршневой тепловой машины внешнего сгорания 2017
  • Рыбаков Анатолий Александрович
RU2653613C1
Способ синхронизации движения поршней в противофазе двухцилиндровой свободнопоршневой тепловой машины внешнего сгорания 2017
  • Рыбаков Анатолий Александрович
RU2659581C1
СВОБОДНОПОРШНЕВОЙ ДВУХЦИЛИНДРОВЫЙ С ОБЩЕЙ ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ И ЛИНЕЙНЫМ ЭЛЕКТРОГЕНЕРАТОРОМ ЭНЕРГОМОДУЛЬ ДВОЙНОГО НАЗНАЧЕНИЯ 2011
  • Рыбаков Анатолий Александрович
RU2468224C1
СПОСОБ УВЕЛИЧЕНИЯ ЭФФЕКТИВНОСТИ ПРОЦЕССА РАСШИРЕНИЯ ПРОДУКТОВ СГОРАНИЯ ПЕРЕПУСКОМ ВОЗДУХА МЕЖДУ КОМПРЕССОРНЫМИ ПОЛОСТЯМИ РАСШИРИТЕЛЬНЫХ МАШИН В СВОБОДНОПОРШНЕВОМ ДВУХЦИЛИНДРОВОМ ЭНЕРГОМОДУЛЕ С ОБЩЕЙ ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ И ЛИНЕЙНЫМ ЭЛЕКТРОГЕНЕРАТОРОМ 2011
  • Рыбаков Анатолий Александрович
RU2479733C1
СПОСОБ ПРОДУВКИ КАМЕРЫ СГОРАНИЯ СВОБОДНОПОРШНЕВОГО ДВУХЦИЛИНДРОВОГО ЭНЕРГОМОДУЛЯ С ОБЩЕЙ ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ И ЛИНЕЙНЫМ ЭЛЕКТРОГЕНЕРАТОРОМ 2011
  • Рыбаков Анатолий Александрович
RU2476699C1
СПОСОБ УПРАВЛЕНИЯ ФАЗАМИ ЭЛЕКТРОЭНЕРГИИ ПОЛИМОДУЛЬНОГО ЭЛЕКТРОГЕНЕРАТОРА НА БАЗЕ СВОБОДНОПОРШНЕВОГО ЭНЕРГОМОДУЛЯ С ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ 2013
  • Рыбаков Анатолий Александрович
RU2520727C1

Иллюстрации к изобретению RU 2 659 598 C1

Реферат патента 2018 года Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником

Изобретение относится к области двигателей с замкнутым рабочим циклом. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что тепло подводится к теплообменнику и нагревает газ в его полости. Система управления отслеживает параметры газа в теплообменнике. Когда параметры достигнут установленного предела, система открывает впускной клапан цилиндра, газ из теплообменника через впускной клапан цилиндра поступает в рабочую полость и поршень движется в конечную точку. Из компрессорной полости газ заряжает пневмоаккумулятор. В результате движения якоря линейного электрогенератора в катушке генерируется импульс электроэнергии. В момент прибытия поршня в конечную точку система закрывает впускной клапан цилиндра и открывает его выпускной клапан. Отработавший газ из рабочей полости через открытый выпускной клапан вытесняется в холодильник, а через обратный клапан газ из холодильника засасывается в компрессорную полость. Одновременно система управления открывает клапан пневмоаккумулятора и газ из него поступает в теплообменник, в котором происходит очередной цикл нагрева газа. После чего цикл повторяется. 1 ил.

Формула изобретения RU 2 659 598 C1

Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником, включающего теплообменник, систему управления, впускной клапан цилиндра, поршень, обратный клапан пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якорь линейного электрогенератора, катушку линейного электрогенератора, выпускной клапан цилиндра, холодильник, обратный клапан цилиндра и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускной клапан цилиндра, газ из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня, под действием газа поршень начинает движение из исходной точки движения в конечную точку движения, из компрессорной полости поршня газ через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора, в результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается, соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра, якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора, поршень с якорем движется в исходное для генерирования очередного импульса электроэнергии положение, отработавший газ из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в холодильник, а через обратный клапан цилиндра газ из холодильника засасывается в компрессорную полость поршня, одновременно система управления открывает клапан пневмоаккумулятора и газ из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева газа до температуры и давления, при которой температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, после чего цикл генерирования импульса электроэнергии повторяется.

Документы, цитированные в отчете о поиске Патент 2018 года RU2659598C1

JPS 63170547 A, 14.07.1988
US 4072010 A, 07.02.1978
Силовая установка 1982
  • Трухов Василий Степанович
  • Орда Евгений Прокофьевич
  • Чувичкин Владимир Александрович
  • Семянников Анатолий Иванович
  • Крюков Владимир Тимофеевич
  • Ключевский Юрий Ефимович
SU1030570A1
US 2010283263 A1, 11.11.2010
US 2011271676 A1, 10.11.2011
US 4511805 A, 16.04.1985
СПОСОБ ГЕНЕРИРОВАНИЯ СЖАТОГО ВОЗДУХА СВОБОДНОПОРШНЕВЫМ ЭНЕРГОМОДУЛЕМ С ОБЩЕЙ ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ 2013
  • Рыбаков Анатолий Александрович
RU2537324C1
ДВИГАТЕЛЬ С ВНЕШНИМ ПОДВОДОМ ТЕПЛОТЫ 1990
  • Качко Николай Константинович
RU2013628C1

RU 2 659 598 C1

Авторы

Рыбаков Анатолий Александрович

Даты

2018-07-03Публикация

2017-07-14Подача