ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области энергомашиностроения.
УРОВЕНЬ ТЕХНИКИ
Ближайший прототип заявленного изобретения патент РФ 2550228 «Электрический генератор переменного тока с двигателем стерлинга».
ЦЕЛЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Основной недостаток устройства по патенту РФ 2550228 состоит в том, что частота колебаний рабочего поршня, соединенного со штоком, напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Следовательно, и эффективность преобразования кинетической энергии рабочего поршня и штока в электроэнергию также напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Цель заявленного изобретения состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.
СУЩНОСТЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником состоит в следующем. Тепловая энергия от топки, лучистая энергия солнца и т.д. подводится к теплообменнику 1 и нагревает газ, например гелий, во внутренней полости теплообменника 1. Система управления отслеживает величину температуры и давления газа в теплообменнике 1. В момент времени, когда температура и давление газа в теплообменнике 1 достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра 2, 3. Максимальная величина давления и температуры газа в теплообменнике 1 выбирается из соображения прочностных характеристик материала теплообменника 1. Газ из теплообменника 1 через впускные клапаны цилиндра 2, 3 поступает в рабочие полости поршней 4, 5. Под действием давления газа поршни 4, 5 начинают движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней 4, 5 через обратные клапаны пневмоаккумулятора 6, 7 газ поступает в пневмоаккумулятор 8. Магнитный поток статорного магнита линейного электрогенератора 9 (статорный магнит линейного электрогенератора может быть постоянным магнитом или электромагнитом) замыкается через якоря линейного электрогенератора 10 и 11. В результате движения якорей линейного электрогенератора 10, 11 площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора 10 и 11 и статорный магнит линейного электрогенератора 9 магнитный поток, и в катушке линейного электрогенератора 12 генерируется импульс электроэнергии. В момент времени прибытия поршней 4, 5 в крайние точки расхождения система управления закрывает впускные клапаны цилиндра 2, 3 и открывает выпускные клапаны цилиндра 13, 14. Якоря линейного электрогенератора 10, 11 с разноименными полюсами притягиваются друг к другу, и поршни 4, 5, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший газ из компрессорных полостей поршней 4, 5 через открытые выпускные клапаны цилиндра 13, 14 вытесняется в холодильник 15, где охлаждается, а через впускные обратные клапаны 16, 17 газ из холодильника 15 засасывается в компрессорные полости поршней 4, 5. Воздух из пневмоаккумулятора 8 через обратный клапан пневмоаккумулятора 18 поступает в теплообменник 1, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора 12. Таким образом, обеспечивается максимальная эффективность преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику 1.
РАСКРЫТИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра, газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления газа поршни начинает движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора газ поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.
ОСУЩЕСТВЛЕНИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Затраты на НИОКР заявленного изобретения не могут существенно отличаться от таковых при проектировании классических тепловых машин.
ГРАФИЧЕСКИЙ МАТЕРИАЛ
Чертеж. Принципиальная схема двухцилиндрового свободнопоршневого энергомодуля с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником:
1 - теплообменник; 2, 3 - впускные клапаны цилиндра; 4, 5 - поршень; 6, 7 - обратные клапаны пневмоаккумулятора; 8 - пневмоаккумулятор; 9 - статорный магнит линейного электрогенератора; 10, 11 - якорь линейного электрогенератора; 12 - катушка линейного электрогенератора; 13, 14 - выпускной клапан цилиндра; 15 - холодильник; 16, 17 - впускной обратный клапан; 18 - обратный клапан пневмоаккумулятора.
Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику. Тепловая энергия от топки подводится к теплообменнику и нагревает газ в его внутренней полости. Система управления отслеживает величину температуры и давления газа в теплообменнике. В момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра. Газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней. Под действием давления газа поршни начинают движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней через обратные клапаны газ поступает в пневмоаккумулятор. В результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря и статорный магнит магнитный поток, и в его катушке генерируется импульс электроэнергии. В момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра. Якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней. Воздух из пневмоаккумулятора через обратный клапан поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора. 1 ил.
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра, газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления газа поршни начинают движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора газ поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.
ДВУХЦИЛИНДРОВЫЙ СВОБОДНОПОРШНЕВОЙ ЭНЕРГОМОДУЛЬ С ОБЩЕЙ ВНЕШНЕЙ КАМЕРОЙ СГОРАНИЯ И ЛИНЕЙНЫМ ЭЛЕКТРОГЕНЕРАТОРОМ С ОППОЗИТНЫМ ДВИЖЕНИЕМ ЯКОРЕЙ | 2010 |
|
RU2422655C1 |
ЭНЕРГОМОДУЛЬ С УСКОРИТЕЛЕМ ЯКОРЯ | 2007 |
|
RU2328608C1 |
Свободнопоршневой двухтактный двигатель-электрогенератор с противоположно движущимися поршнями | 1990 |
|
SU1740727A1 |
Автомат для намотки пленочных конденсаторов | 1961 |
|
SU143160A1 |
Свободнопоршневой двухтактный двигатель-электрогенератор | 1990 |
|
SU1800079A1 |
СВОБОДНОПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С ЛИНЕЙНЫМ ЭЛЕКТРИЧЕСКИМ ГЕНЕРАТОРОМ ПЕРЕМЕННОГО ТОКА | 1999 |
|
RU2150014C1 |
US 3835824 A, 17.09.1974. |
Авторы
Даты
2018-05-22—Публикация
2017-08-07—Подача