СПОСОБ ПОЛУЧЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ОСНОВЫ ГИДРАВЛИЧЕСКИХ МАСЕЛ Российский патент 2018 года по МПК C10G65/12 C10G45/58 C10G7/00 C10G7/06 C10M101/02 

Описание патента на изобретение RU2661153C1

Изобретение относится к способу получения низкозастывающей основы гидравлических масел и может быть применено в нефтеперерабатывающей промышленности для получения низкозастывающей основы средневязких гидравлических масел из непревращенного остатка гидрокрекинга, с использованием процессов вакуумной дистилляции (фракционирования), каталитической гидроочистки, каталитической депарафинизации (гидроизомеризации), гидрофинишинга, ректификации, вакуумной дистилляции и компаундирования.

Способ позволяет получить низкозастываюшую основу средневязких гидравлических масел с кинематической вязкостью при 40°С от 13,5 мм2/с до 24,2 мм2/с и температурой застывания не выше минус 45°С, которая может быть использована для производства широкого ассортимента гидравлических масел классов вязкости 15, 22, 32 и выше по ГОСТ 17479.3-85, ISO 3448 и DIN 51519, масел для гидромеханических передач (Марка «А» и марка «Р» по ТУ 38.1011282-89), а также в композициях консистентных смазок.

Одними из наиболее применяемых в отечественной промышленности средневязких гидравлических масел [Справочник под редакцией В.М. Школьникова. «Топлива/Смазочные материалы/Технические жидкости ассортимент и применение, - М., Издательский центр «ТЕХИНФОРМ» Международной Академии Информатизации, 1999, с. 214-215] являются масло АУ (ТУ 38.1011232-89) и масло АУЛ (ТУ 38.10111258-89), представляющие собой композицию низкозастывающей средневязкой основы, получаемой из малосернистых и сернистых парафинистых нефтей с использованием процессов селективной очистки фенолом прямогонной фракции нефтей, выкипающей в пределах 275-440°С и каталитической депарафинизации полученного рафината, с антиокислительной присадкой и антиокислительной и антикоррозионной присадкой соответственно.

Основными недостатком применяемого процесса селективной очистки фенолом являются:

- накопление в растворителе селективной очистки (феноле) низкокипящих углеводородов, содержащихся во фракции нефтяной 310-400°С с температурами кипения, близкими к температуре кипения фенола, что приводит к проблемам с регенерацией фенола и к ухудшению технико-экономических показателей процесса селективной очистки;

- используемый в процессе селективной очистки растворитель фенол относится ко 2 классу опасности и оказывает вредное влияние на экологию и здоровье человека.

Известен способ производства масла-аналога (ВМГЗ-45), где требуемая кинематическая вязкость основы достигается путем добавления в маловязкую основу, полученную с применением гидрокаталитических процессов, загущающей присадки, что приводит к дополнительным затратам на производство.

Наиболее близким к предлагаемому способу является способ получения основ низкозастывающих гидравлических (арктических) масел, с использованием каталитических процессов гидрокрекинга, гидроизомеризации (улучшение низкотемпературных показателей за счет изменения структуры длинноцепочечных парафинов) [RU 2570649 С1].

Способ позволяет получить маловязкую основу низкозастывающего арктического масла с кинематической вязкостью при температуре 100°С 2,11-5,05 мм2/с. Недостатком данного способа является низкие отборы фракции с кинематической вязкостью при 40°С от 16,0 мм2/с до 22,0 мм2/с на сырье процесса гидроизомеризации, что также приводит к увеличению затрат на производство.

Целью предлагаемого технического решения изобретения - является разработка способа получения низкозастывающей основы гидравлических масел, соответствующих требованиям к основе средневязкого гидравлического масла АУ по ТУ 38.1011232-89 и классам вязкости 15, 22 по ГОСТ 17479.3-85, с использованием в качестве сырья непревращенного остатка гидрокрекинга топливного направления, по технологической схеме с использованием процесса вакуумной дистилляции (фракционирования) для получения целевых фракций, с последующим применением процессов гидроочистки, каталитической депарафинизации (гидроизомеризации), гидрофинишинга, проводимых при давлении ниже 6,0 МПа, ректификации и вакуумной дистилляции и, на заключительной стадии, компаундирования для достижения требуемых значений вязкости и содержания ароматических углеводородов.

Поставленная цель достигается использованием в качестве сырья установки гидрокрекинга наряду с прямогонным сырьем - вакуумным газойлем, и продуктами вторичной переработки: газойлем коксования, остаточным экстрактом - побочным продуктом селективной очистки, в количестве от 4 до 6% мас., и петролатума - побочного продукта депарафинизации остаточного рафината, в количестве от 1 до 3% мас. Это позволяет получить гидрооблагороженный непревращенный остаток гидрокрекинга, содержащий не менее 90% мас. насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30% мас. и индекс вязкости более 120 пунктов, являющийся высококачественным сырьем для получения высокоиндексных масляных компонентов.

Непревращенный остаток гидрокрекинга последовательно подвергается: вакуумной дистилляции (фракционированию), с целью выделения фракций: НК-410°С, 410-440°С, 440-480°С, 480-520°С, 520°С - КК; с целью снижения затрат на производство и увеличения отбора целевой продукта - низкозастывающей основы гидравлических масел, полученные фракции НК-410°С и 410-440°С подвергаются поочередно гидроочистке, с целью насыщения непредельных углеводородов и удаления соединений серы, азота и окрашивающих веществ, затем каталитической депарафинизации (гидроизомеризации) - с целью снижения температуры застывания до температуры не выше минус 45°С; гидрофинишингу - с целью насыщения олефинов, повышения стабильности и удаления окрашивающих веществ в депарафинированном продукте; далее путем ректификации и вакуумной дистилляции выделяется низкозастывающая основа гидравлического масла с кинематической вязкостью при 40°С от 13,5 мм2/с до 24,2 мм2/с. На заключительном этапе, с целью корректировки вязкости, в зависимости от предполагаемого дальнейшего применения, путем компаундирования, основы, полученные из фракций НК-410°С и 410-440°С, смешиваются в любых соотношениях, кроме того для снижения вязкости и насыщения ароматическими углеводородами добавляется до 30% основы промывочного масла, полученной из узкой дизельной фракции 340-390°С.

Осуществление изобретения:

Углеводородное сырье, в состав которого входит прямогонный вакуумный газойль, полученный из смеси малосернистых нефтей, тяжелый газойль коксования, а также побочные продукты вторичных сольвентных процессов -остаточный экстракт селективной очистки деасфальтизата в количестве от 4 до 6% мас. и петролатум - продукт депарафинизации остаточного рафината в количестве от 1 до 3% мас., проходит следующие стадии переработки:

а) гидрокрекинг смесевого углеводородного сырья при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75% с выделением непревращенного остатка гидрокрекинга, содержащего не менее 90% мас. насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30% мас.;

б) вакуумной дистилляции (фракционированию) непревращенного остатка гидрокрекинга при температуре в колонне (верх/низ) 82°С/235°С и давлении (верх/низ) 0,005 МПа/0,01 МПа с выделением целевых фракций: НК-410°С, 410-440°С, 440-480°С, 480-520°С, 520°С - КК;

в) гидроочистка целевых фракций НК-410°С, 410-440°С, полученных на стадии б) из непревращенного остатка гидрокрекинга, в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI и VIII групп периодической таблицы химических элементов, при температуре от 300 до 400°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 500 до 1100 нм33 водородсодержащего газа;

г) каталитическая депарафинизация (гидроизомеризация) гидроочищенных целевых фракций непревращенного остатка гидрокрекинга, полученных на стадии в), в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI и VIII групп периодической таблицы химических элементов, при температуре от 290 до 400°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

д) гидрофинишинг гидроочищенных депарафинированных целевых фракций непревращенного остатка гидрокрекингана, полученныхо на стадии г), в присутствии катализатора содержащего, по меньшей мере, один из металлов VIII групп периодической таблицы химическихэлементов, при температуре от 180 до 300°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

е) ректификация, при температуре в кубе ректификационной колонны не более 330°С и давлении не более 0,17 МПа, гидрооблагороженных целевых фракций непревращенного остатка гидрокрекинга, полученных на стадии д), с выделением фракции НК-280°С, используемой в дальнейшем в качестве компонента товарных топлив, и фракции 280°С - КК.

ж) вакуумная дистилляция, при температуре в кубе вакуумной колонны не более 315°С и давлении абс. не более 0,05 МПа, фракции 280°С - КК, полученных из гидрооблагороженных целевых фракций непревращенного остатка гидрокрекинга на стадии е), с выделением фракций 280°С-345°С, направляемой в качестве компонента в товарные топлива, и фракции 345°С - КК - средневязкой основы гидравлических масел.

з) в случае необходимости корректировки вязкости, полученные из фракций НК-410°С и 410-440°С основы смешиваются в любых соотношениях. Кроме того, с целью снижения вязкости, а также увеличения содержания ароматических углеводородов для обеспечения совместимости с материалами уплотнений гидросистем, к полученным на этапе ж) основам добавляется до 30% основы промывочного масла по СТО 00148599-012-2008, полученной из узкой дизельной фракции 340-390°С, с использованием процессов и режимов стадий в), г), д), е).

В таблице 1 приведены физико-химические характеристики смесевого сырья установки гидрокрекинга и вовлекаемых в него компонентов.

Исходное смесевое сырье подвергают каталитическому гидрокрекингу, при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 и конверсии не ниже 75%.

В таблице 2 приведены физико-химические характеристики непревращенного остатка гидрокрекинга с массовой долей серы менее 30 ppm (0,0030% мас.), а именно 0,0024% мас., и содержанием насыщенных углеводородов не менее 90% мас., в том числе изопарафиновых углеводородов не менее 30% мас.

Полученный непревращенный остаток гидрокрекинга, содержащий не менее 90% мас. насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30% мас., подвергают вакуумной дистилляции (фракционированию) с целью получения целевых фракций: НК-410°С, 410-440°С, 440-480°С, 480-520°С, 520°С - КК, при температуре в колонне (верх/низ) 82°С/235°С и давлении (верх/низ) 0,005 МПа/0,01 МПа. В таблицах 3, 4 приведены физико-химические характеристики фракций.

Полученные целевые фракции НК-410°С, 410-440°С непревращенного остатка после накопления, поочередно, подвергают гидроочистке в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI и/или VIII групп периодической таблицы химических элементов, при температуре от 300 до 400°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 500 до 1100 нм33 водородсодержащего газа.

В таблицах 5, 6 приведены физико-химические характеристики гидроочищенных целевых фракций непревращенного остатка. Гидроочистка проводилась при следующих параметрах ведения процесса: объемная скорость V =0,8 ч-1; давление Р=5,0 МПа; температура Т=350°С; кратность циркуляции ВСГ/сырье=600 нм33.

Далее, полученные гидроочищенные целевые фракции непревращенного остатка гидрокрекинга проходят каталитическую депарафинизацию (гидроизомеризацию) в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI и/или VIII групп периодической таблицы химических элементов, при температуре от 290 до 400°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции водородсодержащего газа от 1200 до 3800 нм33 и гидрофинишинг в присутствии катализатора содержащего, по меньшей мере, один из металлов VIII групп периодической таблицы химических элементов, при температуре от 180 до 300°С, давлении от 3,5 до 5,3 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа.

В таблице 7 приведены характеристики гидроочищенных целевых фракций непревращенного остатка гидрокрекинга после каталитической депарафинизации и гидрофинишинга.

V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах °С - 2000 нм33.

Далее полученные гидрооблагороженные целевые фракции непревращенного остатка гидрокрекинга проходит ректификацию и вакуумную дистилляцию, с выделением фракции 345°С - КК - низкозастывающих основ средневязких гидравлических масел.

Материальные балансы разгонки гидрооблагороженных целевых фракций, полученных при фракционировании непревращенного остатка гидрокрекинга приведены в таблице №8.

*В таблице до 100 % мас. – углеводородные газы.

В таблице №9 приведены показатели качества фракции 345°С - КК - компонентов базовых масел, полученных из гидроочищенных, депарафинированных, гидрированных целевых фракций непревращенного остатка гидрокрекинга

V - объемная скорость подачи сырья, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга.

В случае необходимости, основы полученные из фракций НК - 410°С и 410-440°С, смешиваются в любых соотношениях, коме того для снижения вязкости и насыщения ароматическими углеводородами добавляется до 30% основы промывочного масла, полученной из узкой дизельной фракции 340-390°С по СТО 00148599-12-2008

В таблице 10 показаны типичные качественные показатели основы промывочного масла по СТО 00148599-12-2008:

В таблице 11 показано качество основы гидравлических масел, полученной путем компаундирования образцов 2 и 4 (таблица 9) в соотношении 1:1 (образец 5) и образца 4 с 20% промывочного масла по СТО 00148599-12-2008 (образец 6):

В таблице 12 приведены показатели качества масла АУ и ВМГЗ 45, в таблице 13 показаны требования к вязкости гидравлических масел по ГОСТ 17479.3-85, ISO 3448 и DIN 5151917:

Анализ данных, представленных в таблице 12 и 13, показывает, что полученные низкотемпературные основы средневязких гидравлических масел полностью соответствуют требованиям к основе масла АУ и могут также быть использованы для производства гидравлических масел класса вязкости 15, 22 без вовлечения загущающей присадки. Применение загущающей присадки позволит получить гидравлические масла класса 32 и выше.

Технический результат - получение низкозастывающей основы средневязких гидравлических масел из непревращенного остатка гидрокрекинга, соответствующей 15 и 22 классу вязкости по ГОСТ 17479.3-85 при давлении ведения гидропроцессов менее 6,0 МПа. Высокое содержание насыщенных соединений (более 98%) обеспечивает улучшение эксплуатационных характеристик товарных гидравлических масел, которое не достигается ни применением новых многофункциональных присадок, ни загущением масел.

Похожие патенты RU2661153C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИЗКОТЕМПЕРАТУРНЫХ ОСНОВ ГИДРАВЛИЧЕСКИХ МАСЕЛ 2018
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Анисимов Василий Иванович
RU2693901C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОНЕНТОВ БАЗОВЫХ МАСЕЛ 2018
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Анисимов Василий Иванович
RU2694054C1
СПОСОБ ПОЛУЧЕНИЯ СРЕДНЕВЯЗКИХ БЕЛЫХ МАСЕЛ 2019
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Анисимов Василий Иванович
  • Цаплина Марина Евгеньевна
RU2726619C1
СЫРЬЕВАЯ КОМПОЗИЦИЯ ДЛЯ ОДНОВРЕМЕННОГО ПРОИЗВОДСТВА ОСНОВ ГИДРАВЛИЧЕСКИХ МАСЕЛ, ТРАНСФОРМАТОРНЫХ МАСЕЛ И УГЛЕВОДОРОДНОЙ ОСНОВЫ ДЛЯ БУРОВЫХ РАСТВОРОВ 2022
  • Волобоев Сергей Николаевич
  • Ткаченко Алексей Михайлович
  • Мухин Алексей Федорович
  • Иванов Александр Петрович
  • Наумов Павел Анатольевич
  • Пашкин Максим Игоревич
  • Журавлев Александр Вадимович
  • Глухов Алексей Юрьевич
RU2790393C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОНЕНТОВ БАЗОВЫХ МАСЕЛ 2017
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Анисимов Василий Иванович
RU2667361C1
СПОСОБ ПОЛУЧЕНИЯ БАЗОВОЙ ОСНОВЫ НИЗКОЗАСТЫВАЮЩИХ АРКТИЧЕСКИХ МАСЕЛ 2021
  • Кузора Игорь Евгеньевич
  • Зеленский Константин Валентинович
  • Лейметер Тибор Дьорд
  • Карбаев Константин Владимирович
  • Артемьева Жанна Николаевна
  • Хмелев Иван Александрович
  • Стадник Александр Владимирович
RU2785762C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОИНДЕКСНЫХ КОМПОНЕНТОВ БАЗОВЫХ МАСЕЛ ГРУППЫ III/III 2018
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Анисимов Василий Иванович
RU2675852C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОИНДЕКСНОГО КОМПОНЕНТА БАЗОВЫХ МАСЕЛ ГРУППЫ III/III+ 2019
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Цаплина Марина Евгеньевна
RU2736056C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОИНДЕКСНЫХ КОМПОНЕНТОВ БАЗОВЫХ МАСЕЛ 2017
  • Волобоев Сергей Николаевич
  • Мухин Алексей Федорович
  • Ткаченко Алексей Михайлович
  • Пашкин Роман Евгеньевич
  • Цаплина Марина Евгеньевна
RU2649395C1
СПОСОБ ПОЛУЧЕНИЯ ОСНОВ НИЗКОЗАСТЫВАЮЩИХ АРКТИЧЕСКИХ МАСЕЛ 2015
  • Заглядова Светлана Вячеславовна
  • Китова Марианна Валерьевна
  • Маслов Игорь Александрович
  • Кашин Евгений Васильевич
  • Антонов Сергей Александрович
  • Пиголева Ирина Владимировна
RU2570649C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ОСНОВЫ ГИДРАВЛИЧЕСКИХ МАСЕЛ

Настоящее изобретение относится к способу получения низкозастывающей основы гидравлических масел, который может быть применен в нефтеперерабатывающей промышленности. Способ заключается в каталитическом гидрокрекинге нефтяного сырья при давлении не менее 13,5 МПа, температуре от 380 до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75% с получением непревращенного остатка гидрокрекинга, содержащего не менее 90% мас. насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30% мас., который подвергается последовательно: вакуумной дистилляции (фракционированию), гидроочистке, каталитической депарафинизации, гидрофинишингу, ректификации, вакуумной дистилляции и компаундированию. При этом в качестве сырья гидрокрекинга наряду с прямогонным сырьем - вакуумным газойлем и продуктом вторичной переработки - газойлем коксования используются побочные продукты процесса селективной очистки - остаточный экстракт в количестве от 4 до 6% мас. и депарафинизации - петролатум - от 1 до 3% мас., что позволяет получить требуемое качество низкозастывающей основы средневязких гидравлических масел при давлении ведения гидропроцессов менее 6,0 МПа, в качестве сырья для производства низкозастывающей основы гидравлических масел используются узкие фракции НК-410°С, 410-440°С, выделенные из остатка гидрокрекинга, а компаундирование полученных из фракций остатка гидрокрекинга основ проводят с основой промывочного масла (до 30%). Предлагаемый способ позволяет получить низкозастывающую основу гидравлического масла, соответствующую 15 и 22 классу вязкости по ГОСТ 17479.3-85. 13 табл.

Формула изобретения RU 2 661 153 C1

Способ получения низкозастывающей основы гидравлических масел, который может быть применен в нефтеперерабатывающей промышленности для получения низкозастывающей основы средневязких гидравлических масел путем каталитического гидрокрекинга нефтяного сырья при давлении не менее 13,5 МПа, температуре от 380 до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75% с получением непревращенного остатка гидрокрекинга, содержащего не менее 90% мас. насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30% мас., который подвергается последовательно: вакуумной дистилляции (фракционированию), гидроочистке, каталитической депарафинизации, гидрофинишингу, ректификации, вакуумной дистилляции и компаундированию, отличающийся тем, что:

- в качестве сырья гидрокрекинга наряду с прямогонным сырьем - вакуумным газойлем и продуктом вторичной переработки - газойлем коксования используются побочные продукты процесса селективной очистки - остаточный экстракт в количестве от 4 до 6% мас. и депарафинизации - петролатум - от 1 до 3% мас., что позволяет получить требуемое качество низкозастывающей основы средневязких гидравлических масел при давлении ведения гидропроцессов менее 6,0 МПа;

- в качестве сырья для производства низкозастывающей основы гидравлических масел используются узкие фракции НК-410°С, 410-440°С, выделенные из остатка гидрокрекинга, что позволяет получить высокие отборы целевого продукта и снизить затраты на производство;

- проводят компаундирование полученных из фракций остатка гидрокрекинга основ с основой промывочного масла (до 30%), что позволяет получать требуемые значения вязкости кинематической и содержание ароматических углеводородов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661153C1

СПОСОБ ПОЛУЧЕНИЯ ОСНОВ НИЗКОЗАСТЫВАЮЩИХ АРКТИЧЕСКИХ МАСЕЛ 2015
  • Заглядова Светлана Вячеславовна
  • Китова Марианна Валерьевна
  • Маслов Игорь Александрович
  • Кашин Евгений Васильевич
  • Антонов Сергей Александрович
  • Пиголева Ирина Владимировна
RU2570649C1
СПОСОБ ПОЛУЧЕНИЯ ОСНОВЫ ГИДРАВЛИЧЕСКОГО МАСЛА 1982
  • Рогов С.П.
  • Кузина Т.А.
  • Радченко Е.Д.
  • Каржев В.И.
  • Сорокина А.М.
  • Загородний Н.Г.
  • Богданов Ш.К.
  • Нефедов Б.К.
  • Кругликов В.Я.
  • Коновальчиков Л.Д.
  • Коновальчиков О.Д.
  • Мурашкина М.М.
RU1082001C
Кашин Евгений Васильевич
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Губкина]
- Москва, 2016
EP 1908816 B1, 29.04.2015.

RU 2 661 153 C1

Авторы

Волобоев Сергей Николаевич

Мухин Алексей Федорович

Ткаченко Алексей Михайлович

Пашкин Роман Евгеньевич

Анисимов Василий Иванович

Кислицкий Константин Анатольевич

Даты

2018-07-12Публикация

2017-12-25Подача