Изобретение относится к технологии изготовления термочувствительных кабелей-датчиков с металлическими оболочками и электродами, применяемых для контроля температуры в аварийных системах авиации и для контроля и защиты различных силовых установок промышленных предприятий.
При производстве кабелей-датчиков с металлическими оболочками и жилами применяется способ, заключающийся в изготовлении заготовки путем размещения металлических жил внутри металлической оболочки, заполнении пространства между ними поликристаллическим полупроводниковым оксидным наполнителем и последующем многократном волочении заготовки с промежуточными отжигами [Сучков В.Ф. и др. Жаростойкие кабели с минеральной изоляцией / Энергоатомиздат, 1984, 120 с.]. Этап изготовления заготовки состоит из закрепления в вертикальном положении 1-2 метровой металлической трубы и фиксации в ней коаксиально расположенных жил-электродов. Затем в заготовку насыпается порциями поликристаллический наполнитель и после каждой засыпки вручную осуществляется прессование штоком с отверстиями для жил-электродов. Шток скользит вертикально по жилам-электродам и стенке трубы, прессуя наполнитель. На этом этапе прессования обеспечивается механическая фиксация и коаксиальность жил-электродов по отношению к внешней оболочке. Дальнейшее (основное) прессование наполнителя осуществляется при протяжке (волочении) заготовки через отверстия фильер с последовательно уменьшающимися значениями диаметров отверстий. При волочении на первой стадии обжимается оболочка и происходит уплотнение наполнителя, на второй стадии происходит процесс волочения конструкции заготовки в целом - происходит пропорциональное уменьшение диаметров внешней оболочки и жил-электродов с одновременным их удлинением. Так при исходном внешнем диаметре заготовки 10 мм и длине 1-2 м получают конечные размеры внешнего диаметра 1,5-2 мм и длины 10-15 м. Такой способ обеспечивает прессование наполнителя только за счет механического обжатия заготовки в фильерах.
Однако наполнители термочувствительных кабелей-датчиков, изготовленных таким способом, обладают значительной пористостью, что обуславливает разброс электросопротивлений как по длине датчика, так и общего сопротивления (до 25%). Разброс еще больше увеличивается в случае применения композиционных наполнителей, представляющих механические смеси различных полупроводниковых фаз [Авторское св-во №1268543, опубл. 07.11.1986; Авторское св-во №1608165, опубл. 23.11.1990].
Ближайшим аналогом (прототипом) настоящего изобретения, по мнению заявителя, является способ изготовления жаростойкого кабеля-датчика, известный из документа [Авторское св-во №1072109, опубл. 07.02.1984], в котором исходным наполнителем кабеля-датчика являются гидроксиды тугоплавких металлов, насыщенные водным раствором азотнокислого церия. Согласно такому способу наполнитель помещают в заготовку и перед первым циклом волочения производят термообработку заготовки для дегидратации воды и образования безводной оксидной фазы, которая при дальнейших термообработках не меняет своего состава. Далее осуществляется многократное волочение заготовки с периодическими отжигами в интервале температур 600-1100°C. В ближайшем аналоге улучшение качества кабеля-датчика происходит за счет повышения однородности состава наполнителя, что достигается заменой операции вертикальной механической опрессовки автоматической опрессовкой жилы-электрода на прессах-автоматах гидроокисью с последующим дегидрированием при термообработке перед прохождением фильер. Таким образом, в процессе изготовления кабеля-датчика происходит изменение состава с уменьшением массы наполнителя до операции волочения заготовки. При этом появления дополнительных фаз полупроводниковых оксидов не происходит. Прессование осуществляется только в процессе волочения в две стадии.
Технический результат настоящего изобретения заключается в увеличении поверхности контактов между поликристаллами наполнителя, повышении плотности вследствие уменьшения пористости за счет появления дополнительных поликристаллов, что соответственно увеличивает однородность электрофизических характеристик наполнителей кабелей-датчиков и уменьшает долю брака, возникающего при значительных отклонениях электрофизических характеристик от заданных.
Технический результат достигается способом изготовления термочувствительных кабелей-датчиков с полупроводниковыми оксидными наполнителями, который включает заполнение коаксиальной металлической заготовки поликристаллическими наполнителями, холодное механическое прессование, многократное волочение заготовки через ряд фильер с периодическими термообработками, при этом в качестве наполнителя используются оксидные фазы твердых растворов или сложных оксидов, способных распадаться при технологических термообработках с увеличением числа поликристаллов.
За счет осуществления предлагаемого способа одновременно увеличивается площадь контактов между поликристаллами и уменьшается пористость наполнителя, тем самым увеличивается воспроизводимость электрофизических характеристик кабелей-датчиков.
Таким образом, отличие и преимущество предлагаемого способа от известных заключается в дополнительном прессовании наполнителя и уменьшении его пористости с увеличением площади контактов поликристаллов за счет распада соединений или твердых растворов при термообработках в процессе волочения. Это позволяет сократить первую и вторую стадии волочения при двухкратном увеличении фаз в результате процесса распада и уплотнения наполнителя не только от сжатия внешней оболочки, но и внутреннего прессования наполнителя при появлении новых фаз.
В некоторых предпочтительных вариантах осуществления настоящего изобретения наполнитель представляет собой твердый раствор ZnO-NiO, или твердый раствор SnO2-TiO2, или двойной оксид LaNiO3, или двойной оксид CuAl2O4.
Температурный интервал отжигов-термообработок 700-1200°C определяется как условиями распада исходных оксидных фаз, так и маркой жаропрочной стали оболочек и жил-электродов. Так, если это сталь 1Х18Н10Т, то температурный интервал термообработок составляет 800-1100°C, и под этот интервал выбирается соответствующий состав твердого раствора или двойной оксид, распадающиеся на несколько фаз в этих условиях.
Повышение плотности наполнителя упрочняет его коаксиальность (закрепление жил-электродов внутри оболочек) и предотвращает возможность короткого замыкания между жилами-электродами и оболочками при изгибах.
Предлагаемый способ обеспечивает совмещение операций формирования конечного состава наполнителя и стадий волочение-отжиг при изготовлении кабеля-датчика.
В предлагаемом способе (в отличие от прототипа) изменение состава и уплотнение наполнителя происходит не при предварительной дегидратации, а в результате твердофазных реакций распада твердых растворов или сложных оксидов, протекающих при технологических термообработках - отжигах заготовок, что обеспечивает увеличения поверхности контактов поликристаллов и дополнительное прессование (уплотнение наполнителя) в процессе волочения.
Согласно известным в уровне техники техническим решениям термообработки при 700-1000°C на воздухе или в инертной атмосфере (аргоне) проводились исключительно с целью придания пластичности (снятия напряжения) с металлических компонентов заготовок для предотвращения их обрывов при протяжке через уменьшающиеся в диаметре фильеры.
Увеличение числа поликристаллов и площадей их контактов при применении в качестве исходного наполнителя твердых растворов ZnO-NiO происходит по реакции:
При этом кубическая фаза исходного твердого раствора при термообработках 700-900°C на воздухе распадается на две фазы твердых растворов с вюрцитной и кубической структурами.
Процесс распада твердых растворов SnO2-TiO2 также протекает с образованием новых фаз твердых растворов с измененным соотношением оксид олова/оксид титана:
Распад двойных оксидов LaNiO3 и CuAl2O4 при термообработках на воздухе при 900-1100°C протекает по реакциям:
4CuAl2O4=2Cu2Al2O4+2Al2O3
Полученные в результате распада фазы Ni1-yZnyO, Ni1-zZnzO, SnxTi1-yO2, SnyTi1-yO2, La2NiO4, Cu2Al2O4, также как и исходные, являются оксидными полупроводниками.
Пористость поликристаллического наполнителя после термообработок с проведением процессов распада оксидных фаз уменьшается на 25-40%.
Предложенный способ по сравнению с ближайшим аналогом позволяет увеличить однородность электросопротивления. Повышение однородности электросопротивления по длине кабеля-датчика уменьшает разброс параметров по величинам удельного объемного электросопротивления и коэффициенту температурной чувствительности до 10%.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления жаростойкого кабеля | 1981 |
|
SU1072109A1 |
Датчик температуры и способ его изготовления | 1982 |
|
SU1024748A1 |
Способ изготовления датчика температуры | 1983 |
|
SU1150496A1 |
ТЕРМОЧУВСТВИТЕЛЬНЫЙ КАБЕЛЬ-ДАТЧИК | 2015 |
|
RU2605548C1 |
СЕНСОРНЫЙ КАБЕЛЬ-ДАТЧИК | 2015 |
|
RU2603555C1 |
Датчик температуры и способ его изготовления | 1985 |
|
SU1290094A1 |
ПОЛИФУНКЦИОНАЛЬНЫЙ ДАТЧИК | 2014 |
|
RU2584316C9 |
Термочувствительный кабель | 1982 |
|
SU1166181A1 |
Термочувствительный кабель | 1980 |
|
SU890444A1 |
Способ жидкофазного синтеза нанокерамических материалов в системе LaO-MnO-NiO для создания катодных электродов твердооксидного топливного элемента | 2020 |
|
RU2743341C1 |
Изобретение относится к способу изготовления термочувствительных кабелей-датчиков с полупроводниковыми оксидными наполнителями, применяемых для контроля температуры в аварийных системах авиации и для контроля и защиты различных силовых установок промышленных предприятий. Способ включает заполнение коаксиальной металлической заготовки поликристаллическими наполнителями, холодное механическое прессование, многократное волочение заготовки через ряд фильер с периодическими термообработками, при этом в качестве наполнителя используются оксидные фазы твердых растворов или сложных оксидов, способных распадаться при технологических термообработках с увеличением числа поликристаллов. Изобретение обеспечивает увеличение однородности электрофизических характеристик наполнителей кабелей-датчиков и уменьшает долю брака, возникающего при значительных отклонениях электрофизических характеристик от заданных. 4 з.п. ф-лы.
1. Способ изготовления термочувствительных кабелей-датчиков с полупроводниковыми оксидными наполнителями, включающий заполнение коаксиальной металлической заготовки поликристаллическими наполнителями, холодное механическое прессование, многократное волочение заготовки через ряд фильер с периодическими термообработками, отличающийся тем, что в качестве наполнителя используются оксидные фазы твердых растворов или сложных оксидов, способных распадаться при технологических термообработках с увеличением числа поликристаллов.
2. Способ по п. 1, отличающийся тем, что наполнитель представляет собой твердый раствор ZnO-NiO.
3. Способ по п. 1, отличающийся тем, что наполнитель представляет собой твердый раствор SnO2-TiO2.
4. Способ по п. 1, отличающийся тем, что наполнитель представляет собой двойной оксид LaNiO3.
5. Способ по п. 1, отличающийся тем, что наполнитель представляет собой двойной оксид CuAl2O4.
Способ изготовления жаростойкого кабеля | 1981 |
|
SU1072109A1 |
Термочувствительный кабель | 1980 |
|
SU890444A1 |
RU 2013157501 A, 27.06.2015 | |||
CN 102034573 A, 27.04.2011. |
Авторы
Даты
2018-07-31—Публикация
2017-04-13—Подача