Теплообменник Российский патент 2018 года по МПК F28D7/10 F28F13/12 

Описание патента на изобретение RU2663370C1

Изобретение относится к теплообменным устройствам, а точнее к теплообменным аппаратам типа труба в трубе, и может быть использовано в энергетике и транспорте.

Известны теплообменники, содержащие наружную трубу для первого теплоносителя с патрубками входа и выхода и замкнутыми на торцах, внутреннюю трубу для второго теплоносителя, также содержащую патрубки для входа и выхода (см. патент на полезную модель №125319, класс МПК F28D 71/10 RU), в котором первый теплоноситель движется внутри кольцевого канала, образованного наружной трубой и внутренней трубой.

Известен струйный теплообменник, в котором в межтрубном пространстве имеется цилиндрическая перфорированная круглыми отверстиями вставка к поверхности теплообмена (см. патент RU 2502930), через отверстия которой происходит ввод теплоносителя. Однако он имеет недостаток в виде низкой эффективности из-за большого гидравлического сопротивления вследствие того, что весь поток теплоносителя пропускается через малые отверстия в перфорированной вставке.

Известны также теплообменные трубы, содержащие вставки, увеличивающие теплоотдачу от горячей стенки трубы к теплоносителю (см. патент RU 2111432 F28F 1/40, F28F 1/08).

Известен теплообменник типа труба в трубе, в котором во внутренней трубе и в межтрубном пространстве имеются винтовые вставки, при этом потоки теплоносителя двигаются по винтовым спиралям (см. патент RU 2502931). Эффективность данного теплообменника определяется длиной пути прохождения теплоносителя в контакте с теплообменной поверхностью.

Указанные теплообменники имеют общие недостатки, заключающиеся в следующем. При протекании жидкости вдоль нагретой поверхности внутренней трубы, температура в пограничном слое потока теплоносителя увеличивается. Вследствие этого изменяются характеристики теплоносителя, в частности изменяется вязкость теплоносителя. Это в свою очередь влияет на характер движения теплоносителя и коэффициент теплоотдачи. Таким образом, вблизи стенки движется поток с пониженной вязкостью, а в центральной и периферийной областях потока теплоносителя образуются зоны с повышенной вязкостью и более низкой температурой. При этом уменьшается эффективность теплообменника.

Целью изобретения является повышение эффективности теплообменника путем увеличения степени перемешивания теплоносителя, при минимальном гидравлическом сопротивлении.

Поставленная задача решается за счет того, что в предложенном теплообменнике. содержащем две коаксиально расположенные трубы, в межтрубном пространстве расположены с зазором между собой пластины, закрепленные между собой обечайками, выполненные с просечными перфорациями, лепестки которых направлены навстречу двигающемуся теплоносителю.

Коаксиально распложенные пластины с просечными перфорациями в теплообменнике могут быть расположены таким образом, что расстояние между пластинами и внутренней трубой увеличивается по длине теплообменника.

Суммарная площадь перфораций пластин в предложенном теплообменнике может быть равна или меньше суммарной площади зазоров между пластинами.

Ширина пластин с просечными перфорациями и угол наклона лепестков просечных перфораций в заявленном теплообменнике может изменяется по длине теплообменника.

В межтрубном пространстве на обечайках устанавливаются изогнутые пластины по форме внутренней трубы, перфорированные просечными отверстиями, при этом отогнутые лепестки перфораций направлены навстречу набегающему потоку холодного теплоносителя. С помощью этих лепестков холодная часть теплоносителя, имеющего более высокую вязкость, направляется в зону контакта с нагретой поверхностью внутренней трубы. Так как в зоне нагрева вязкость теплоносителя уменьшается, то теплоноситель становится более подвижным, и он вытесняется через щели между пластинами в холодную область потока. Таким образом, происходит постоянное перемешивание потока теплоносителя из периферийной зоны в область контакта с нагретой поверхностью внутренней трубы, что увеличивает эффективность теплообменника.

На Фиг. 1 схематично показан разрез теплообменника. На Фиг. 2 представлен элемент внутренней трубы с прикрепленными перфорированными просечными отверстиями пластинами.

Теплообменник содержит наружную трубу 1, внутри которой концентрично расположена труба 2. В межтрубном пространстве расположены пластины 3 с просечными перфорациями 4, лепестки 5 которых отогнуты навстречу потоку двигающейся жидкости. Пластины 3 скреплены между собой обечайками 6, надетыми на внутреннюю трубу 2. Пластины 3, имеющие кривизну по форме внутренней трубы 2, расположены параллельно друг другу с зазором 7 между собой.

Перфорированные пластины изготавливаются из тонколистовой стали путем проката через вальцы с пуансонами, имеющими пирамидальные выступы. Далее они изгибаются по радиусу, скрепляются с помощью контактной сварки с обечайками. Вся конструкция вставляется внутрь теплообменника в межтрубное пространство.

Работа устройства осуществляется следующим образом. При движении холодного теплоносителя по кольцевому каналу, образованному внутренней трубой 2 и наружной трубой 1, среда теплоносителя перемещается через перфорации 4 пластин 3, скрепленных обечайками 6, в область нагрева между трубой 2 и пластинами 3. Лепестки 5 просечных перфораций 4 способствуют этому перемещению. Нагреваясь от контакта с поверхностью внутренней трубы 2 с горячим теплоносителем, теплоноситель, находящийся между пластинами 3 и поверхностью внутренней трубы 2, нагревается, изменяет свою вязкость, становится более подвижным и через щели 7 вытесняется в область между пластинами 3 внешней трубы 1, в которой движется теплоноситель с большей вязкостью.

Таким образом, заявленная конструкция теплообменника позволяет интенсифицировать теплоотдачу и более эффективно передавать тепловую энергию от горячего теплоносителя к холодному.

Похожие патенты RU2663370C1

название год авторы номер документа
ТЕПЛООБМЕННЫЙ АППАРАТ 2018
  • Абубикеров Даниил Рафикович
  • Матвеев Андрей Павлович
  • Подсекин Александр Валентинович
  • Рогов Юрий Васильевич
RU2703148C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2021
  • Терентьев Сергей Леонидович
  • Рубцов Дмитрий Викторович
RU2770086C1
НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ 1993
  • Сударев А.В.
  • Сударев Б.В.
  • Сударев В.Б.
  • Кондратьев А.А.
  • Чистяков Д.В.
RU2027968C1
ТЕПЛООБМЕННИК ДЛЯ КРИОГЕННЫХ ПРОДУКТОВ 2020
  • Шишков Владимир Александрович
RU2751689C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННЫЙ АППАРАТ С ДОПОЛНИТЕЛЬНЫМ СЕКТОРОМ 2018
  • Васильков Алексей Анатольевич
  • Смирнова Арина Александровна
RU2726448C2
ВЕРТИКАЛЬНЫЙ КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК 2020
  • Клыков Михаил Васильевич
  • Алушкина Татьяна Валентиновна
RU2749474C1
СТРУЙНЫЙ ТЕПЛООБМЕННИК ТИПА ТРУБА В ТРУБЕ 2012
  • Холодков Игорь Вениаминович
  • Головенкин Евгений Николаевич
  • Ефремов Анатолий Михайлович
  • Тестоедов Николай Алексеевич
RU2502930C2
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2008
  • Наумов Александр Лаврентьевич
  • Мирзоян Гамлет Ашотович
  • Сотников Виктор Михайлович
RU2391613C1
Теплообменник 1988
  • Горшков Геннадий Борисович
  • Гуров Олег Иванович
  • Павленко Валентин Федорович
  • Лупырь Виталий Федорович
  • Жерденко Анатолий Михайлович
  • Даниленко Нина Хаимовна
  • Огилец Лиана Ивановна
SU1643913A1
Теплообменник 2023
  • Картошкин Александр Петрович
  • Евсеев Александр Сергеевич
  • Агапов Дмитрий Станиславович
RU2799161C1

Иллюстрации к изобретению RU 2 663 370 C1

Реферат патента 2018 года Теплообменник

Изобретение относится к теплообменным устройствам и может быть использовано в энергетике и транспорте. Теплообменник содержит две концентрически расположенные трубы, в межтрубном пространстве которых, вблизи внешней поверхности внутренней трубы находятся пластины, согнутые в виде элементов трубы с чередующимися просечными отверстиями, расположенными друг за другом, причем отогнутые элементы просечной перфорированной поверхности в форме лепестков расположены под углом к направлению движущегося потока теплоносителя, таким образом, что происходит захват части движущегося потока теплоносителя и его перенаправление во внутреннюю зону между перфорированными просечными пластинами и внешней поверхностью внутренней трубы. Технический результат - увеличение эффективности теплоотдачи за счет изменения направления движения холодных вязких слоев теплоносителя в область разогретой поверхности внутренней трубы теплообменника. 4 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 663 370 C1

1. Теплообменник, характеризующийся тем, что он содержит две коаксиально расположенные трубы, в межтрубном пространстве которых расположены с зазором между собой пластины, закрепленные между собой обечайками, выполненные с просечными перфорациями, лепестки которых направлены навстречу двигающемуся теплоносителю.

2. Теплообменник по п. 1, отличающийся тем, что коаксиально распложенные пластины с просечными перфорациями, расположены таким образом, что расстояние между пластинами и внутренней трубой увеличивается по длине теплообменника.

3. Теплообменник по п. 1, отличающийся тем, что суммарная площадь перфораций равна или меньше суммарной площади зазоров между пластинами.

4. Теплообменник по п. 1, отличающийся тем, что ширина пластин с просечными перфорациями изменяется по длине теплообменника.

5. Теплообменник по п. 1, отличающийся тем, что угол наклона лепестков просечных перфораций изменяется по длине теплообменника.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663370C1

Теплообменник 1981
  • Матвеенко Георгий Петрович
  • Андрейченко Леонард Павлович
  • Сафонов Иван Григорьевич
SU994895A1
СТРУЙНЫЙ ТЕПЛООБМЕННИК ТИПА ТРУБА В ТРУБЕ 2012
  • Холодков Игорь Вениаминович
  • Головенкин Евгений Николаевич
  • Ефремов Анатолий Михайлович
  • Тестоедов Николай Алексеевич
RU2502930C2
WO 9523319 A2, 31.08.1995
GB 2059042 A, 15.04.1981
Двигатель внутреннего сгорания 1979
  • Кустарев Юрий Степанович
  • Азбель Александр Борисович
  • Взоров Борис Аркадьевич
SU823612A1

RU 2 663 370 C1

Авторы

Шевченко Сергей Николаевич

Одинцов Виктор Иванович

Даты

2018-08-03Публикация

2017-07-25Подача