ТЕПЛООБМЕННЫЙ АППАРАТ Российский патент 2019 года по МПК F28D7/16 F28F9/02 

Описание патента на изобретение RU2703148C1

Изобретение относится к теплообменной технике и может быть использовано в различных отраслях промышленности, коммунального и сельского хозяйств, преимущественно в системе теплоснабжения биогазовой установки для рекуперации теплоты эффлюента.

Биомассу в биореакторе биогазовой установки необходимо поддерживать при определенной температуре для создания оптимальных условий повышенной продуктивности бактерий. Предварительный подогрев биомассы за счет рекуперации теплоты эффлюента позволяет существенно снизить затраты энергии на подогрев биомассы в биореакторе.

В качестве нагревательного устройства биомассы с помощью эффлюента применяют большей частью теплообменник типа «труба в трубе», представляющий из себя две трубы, одна из которых, меньшего диаметра, концентрично расположена внутри другой, большего диаметра, с кольцевым зазором, называемым межтрубным пространством (Бажан П.И. и др. Справочник по теплообменным аппаратам. М. Машиностроение, 1989, с. 56, рис. 1.15, б). По внутренней трубе прокачивается эффлюент с более высокой температурой, а по межтрубному пространству - нагреваемая биомасса с меньшей температурой. При этом стенка внутренней трубы нагревается и передает тепло холодной биомассе, у которой вследствие этого температура повышается.

Известны технические решения, направленные на увеличение эффективности теплоотдачи теплообменников «труба в трубе» (см, например RU 125319 U1, МПК F28D 7/10, опубл. 27.02.2013, RU 2663370 С1, МПК F28D 7/10, F28F 13/12, опубл. 03.08.2018, за счет введения дополнительных элементов. Так теплообменник по патенту RU 2663370, 03.08.2018 содержит две концентрически расположенные трубы, в межтрубном пространстве которых, вблизи внешней поверхности внутренней трубы находятся пластины, согнутые в виде элементов трубы с чередующимися просечными отверстиями, расположенными друг за другом, причем отогнутые элементы просечной перфорированной поверхности в форме лепестков расположены под углом к направлению движущегося потока теплоносителя, таким образом, что происходит захват части движущегося потока теплоносителя и его перенаправление во внутреннюю зону между перфорированными просечными пластинами и внешней поверхностью внутренней трубы.

Однако известные одиночные теплообменники имеют недостаточную производительность из-за малого объема межтрубного пространства.

В RU 2546904 С2, МПК F28D 7/10, F28D 7/16, опубл. 10.04.2015 описан прямоточный теплообменный аппарат, содержащий корпус и концентрические трубные каналы типа "труба в трубе", образованные цилиндром, изготовленным из теплообменных элементов, примыкающих друг к другу боковыми поверхностями. Образующие цилиндр теплообменные элементы являются теплообменными элементами типа "труба в трубе", причем между наружной поверхностью и корпусом созданного цилиндра существует зазор, образующий канал греющей среды, соединенный последовательно с внутренней полостью цилиндра и с внутренним каналом элементов "труба в трубе", образующих цилиндр.

В известном теплообменном аппарате реализуется трехходовой теплообмен греющей среды, что повышает отъем энергии от греющей среды. Рабочая среда движется в однопроходном режиме в кольцевых каналах группы теплообменных элементов, которые являются прямыми элементами «труба в трубе» с небольшим межтрубным пространством, что незначительно увеличивает объем нагреваемого сырья по сравнению с объемом теплообменного аппарата. Кроме того, недостатком аппарата является повышенная металлоемкость из-за использования в качестве теплообменного элемента двухтрубного элемента «труба в трубе».

В основу настоящего изобретения положена задача создания теплообменного аппарата, обеспечивающего повышенную производительность и имеющего меньшую металлоемкость его изготовления.

Указанная задача решается тем, что теплообменный аппарат содержит горизонтально ориентированный цилиндрический корпус с днищами выпуклой формы, патрубок подвода и патрубок отвода трубного теплоносителя, входной и выходной патрубок межтрубного теплоносителя, теплообменные элементы в виде одинарных труб, при этом центральная труба расположена по продольной оси корпуса, а боковые трубы размещены на удалении от продольной оси на равном расстоянии друг от друга, концевые участки труб жестко закреплены в противоположно расположенных отверстиях в днищах, при этом с одной стороны корпуса центральная труба соединена с патрубком подвода трубной среды, а боковые трубы соединены с вводами сборного коллектора, выход которого соединен с патрубком отвода трубной среды, с другой стороны корпуса центральная труба соединена с входом распределительного коллектора, отводы которого соединены с боковыми трубами, с обеспечением возможности протекания трубной среды в прямом направлении через центральную трубу и в обратном направлении через боковые трубы.

Задача решается также тем, что:

сборный коллектор выполнена в виде цилиндра, торцевая сторона цилиндра в направлении днища закрыта сферической крышкой, другая торцевая сторона цилиндра является выходом сборного коллектора, а по цилиндрической поверхности расположены вводы сборного коллектора;

распределительный коллектор выполнен в виде цилиндра, торцевая сторона цилиндра в направлении днища является входом распределительного коллектора, другая торцевая сторона цилиндра закрыта сферической крышкой, а по цилиндрической поверхности расположены отводы распределительного коллектора;

входной патрубок межтрубной среды расположен сверху корпуса около днища со стороны сборного коллектора, а выходной патрубок межтрубной среды расположен снизу корпуса около днища со стороны распределительного коллектора;

на корпусе установлена, по крайней мере, одна колба для термодатчика;

на концевом участке верхних труб со стороны сборного коллектора установлен, по крайней мере, один воздухоотводчик;

на концевом участке нижней трубы со стороны сборного коллектора установлен сливной патрубок трубной среды;

на корпусе, сборном и распределительном коллекторах установлен утеплитель с защитным кожухом.

Повышение производительности теплообменного аппарата и снижение металлоемкости его изготовления достигается за счет размещения в одном корпусе группы теплообменных элементов в виде одинарных труб и обеспечения двухходового теплообмена греющей среды.

Изобретение поясняется чертежами, на которых:

фиг. 1. изображает теплообменный аппарат (сечение А-А на фиг. 2);

фиг. 2 изображает теплообменный аппарат, вид с торца, со стороны сборного коллектора;

фиг. 3 изображает днище, вид сверху;

фиг. 4 изображает днище, вид сбоку;

фиг. 5 изображает вид теплоизолированного теплообменного аппарата в разрезе.

Теплообменный аппарат содержит горизонтально ориентированный цилиндрический корпус 1, на противоположных торцевых сторонах которого закреплены днища 2 выпуклой формы, патрубок 3 подвода и патрубок 4 отвода трубной среды, входной патрубок 5 и выходной патрубок 6 межтрубной среды. Предпочтительной является сферическая или эллиптическая форма днищ 2.

Теплообменные элементы выполнены в виде одинарных труб, при этом центральная труба 7 расположена по продольной оси корпуса 1, а боковые трубы 8 размещены на удалении от продольной оси на равном расстоянии друг от друга. Концевые участки труб жестко закреплены в противоположно расположенных отверстиях 9 в днищах 2. С одной стороны корпуса центральная труба соединена с патрубком 3 подвода трубной среды, а боковые трубы 8 соединены с вводами 10 сборного коллектора 11, выход которого соединен с патрубком 4 отвода трубной среды. Предпочтительным является выполнение сборного коллектора 11 в виде цилиндра 12, торцевая сторона которого в направлении днища закрыта сферической крышкой 13, другая торцевая сторона цилиндра является выходом сборного коллектора, а вводы 10 расположены на цилиндрической поверхности. Выход сборного коллектора 11 соединен с патрубком 4 отвода трубной среды.

С другой стороны корпуса центральная труба 7 соединена с входом распределительного коллектора 14, отводы 15 которого соединены с боковыми трубами 8. Предпочтительным является выполнение распределительного коллектора 14 в виде цилиндра 16, торцевая сторона которого в направлении днища является входом распределительного коллектора, другая торцевая сторона цилиндра закрыта сферической крышкой 17, а по цилиндрической поверхности расположены отводы 15 распределительного коллектора.

Такое подключение труб обеспечивает двухходовое протекания трубной среды в прямом направлении через центральную трубу 7 и в обратном направлении через боковые трубы 8.

Количество теплообменных элементов и их расположение выбирают из условий равномерного обогрева во всем объеме теплообменного аппарата. Устройство работает следующим образом.

Трубная среда последовательно проходит через патрубок 3, трубное пространство центральной трубы 7 и попадает в цилиндр 16 распределительного коллектора 14, где, отражаясь от его сферической крышки 17, равномерно распределяется по отводам 15 и поступает в боковые трубы 8. По боковым трубам 8 трубная среда проходит в обратном направлении, по вводам 10 поступает в цилиндр 12 сборного коллектора 11 и выходит через патрубок отвода 4 в обратный трубопровод трубной среды. Таким образом по трубной среде теплообменник является двухходовым, что повышает теплообмен греющей среды.

Межтрубная среда по входному патрубку 5 поступает в теплообменный аппарат и движется, проходя по межтрубному пространству теплообменных элементов, через выходной патрубок 6 в обратный трубопровод межтрубной системы. За счет расположения входного и выходного патрубков межтрубной среды на противоположных концах корпуса сверху и снизу, соответственно, межтрубная среда по отношению к трубной среде в боковых трубах 8 движется противотоком, что повышает эффективность теплопередачи.

Контроль температуры межтрубной среды производят с помощью термодатчика, установленного в колбе 18. С целью выпуска воздуха из трубного пространства, при его заполнении трубной средой, на концевом участке труб, ориентированных вверх, со стороны сборного коллектора установлен, по крайней мере, один воздухоотводчик 19, а для слива трубной среды на концевом участке трубы, ориентированной вниз, установлен сливной патрубок 20. В горизонтальном положении теплообменник устанавливают на опорах 21. Для уменьшения тепловых потерь, особенно при использовании теплообменника вне отапливаемого помещения, корпус, сборный и распределительный коллекторы покрывают утеплителем 22 с защитным кожухом 23.

Теплообменный аппарат может работать как в проточном, так и накопительном режимах.

При использовании теплообменного аппарата в режиме рекуператора для подогрева биомассы перед загрузкой в биореактор в качестве трубной среды используют эффлюент, сливаемый из биореактора.

Теплообменный аппарат можно использовать при различных вариантах трубной и межтрубной сред, например, пар - жидкость, газ - газ, жидкость - жидкость в различных отраслях промышленности, коммунального и сельского хозяйств.

Похожие патенты RU2703148C1

название год авторы номер документа
ТЕПЛООБМЕННИК 2018
  • Абубикеров Даниил Рафикович
  • Матвеев Андрей Павлович
  • Подсекин Александр Валентинович
  • Рогов Юрий Васильевич
RU2700311C1
ТЕПЛООБМЕННЫЙ МОДУЛЬ 2021
  • Найден Иван Викторович
RU2780572C1
ТЕПЛООБМЕННИК 2012
  • Каюмов Малик Шафикович
  • Ахметшин Раис Асылгараевич
  • Талыпов Шамиль Мансурович
  • Саттаров Ильдар Нургаязович
  • Сагдатов Фаиз Хуснимарданович
  • Байрашев Рамиль Николаевич
RU2489663C1
ДИСТИЛЛЯЦИОННАЯ ОБЕССОЛИВАЮЩАЯ УСТАНОВКА, ГОРИЗОНТАЛЬНО-ТРУБНЫЙ ПЛЕНОЧНЫЙ ИСПАРИТЕЛЬ И КОНДЕНСАТОР 2008
  • Картовский Юрий Владимирович
  • Егоров Александр Павлович
  • Смирнов Юрий Константинович
  • Глушко Кирилл Владимирович
  • Богловский Александр Викторович
RU2388514C1
КОЛОННЫЙ АППАРАТ ДЛЯ ДИСТИЛЛЯЦИИ МАСЛЯНЫХ МИСЦЕЛЛ 2021
  • Лисицын Александр Николаевич
  • Волков Сергей Михайлович
  • Федоров Александр Валентинович
  • Новоселов Александр Геннадьевич
  • Федоров Алексей Александрович
RU2809805C1
ПРОТОЧНЫЙ КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2014
  • Липухин Евгений Антонович
RU2572545C1
ТЕПЛООБМЕННИК 2014
  • Круглов Геннадий Александрович
  • Андреева Марина Викторовна
RU2558485C1
АППАРАТ ДЛЯ ЖИДКОФАЗНОГО СИНТЕЗА ИЗОПРЕНА 1989
  • Смоленцев Ю.М.
  • Петушинский Л.Н.
  • Андреев В.А.
  • Комаров С.М.
  • Суровцев А.А.
  • Карпов О.П.
  • Румянцев В.Г.
  • Фарберов А.М.
  • Скачкова Н.А.
  • Бикчентаев Т.А.
RU2061538C1
РЕКУПЕРАТИВНЫЙ ТЕПЛООБМЕННИК 2007
  • Кулешов Александр Александрович
  • Кузин Александр Иванович
  • Демин Михаил Иванович
  • Гуменный Андрей Викторович
  • Орлов Вадим Александрович
  • Сурин Владимир Павлович
RU2358217C1
Теплообменный аппарат 2016
  • Грищенко Борис Александрович
  • Хорват Алексей Владимирович
  • Черниченко Владимир Викторович
  • Шипко Юрий Владимирович
  • Иванов Алексей Владимирович
  • Ерин Олег Леонидович
RU2621194C1

Иллюстрации к изобретению RU 2 703 148 C1

Реферат патента 2019 года ТЕПЛООБМЕННЫЙ АППАРАТ

Изобретение относится к теплообменной технике и может быть использовано в различных отраслях промышленности, коммунального и сельского хозяйств, преимущественно в системе теплоснабжения биогазовой установки для рекуперации теплоты эффлюента. Теплообменный аппарат содержит горизонтально ориентированный цилиндрический корпус с днищами выпуклой формы, патрубок подвода и патрубок отвода трубной среды, входной и выходной патрубок межтрубной среды, теплообменные элементы в виде одинарных труб. Центральная труба расположена по продольной оси корпуса, а боковые трубы размещены на удалении от продольной оси на равном расстоянии друг от друга. Концевые участки труб жестко закреплены в противоположно расположенных отверстиях в днищах. С одной стороны корпуса центральная труба соединена с патрубком подвода трубной среды, а боковые трубы соединены с вводами сборного коллектора, выход которого соединен с патрубком отвода трубной среды. С другой стороны корпуса центральная труба соединена с входом распределительного коллектора, отводы которого соединены с боковыми трубами, с обеспечением возможности протекания трубной среды в прямом направлении через центральную трубу и в обратном направлении через боковые трубы, что реализует двухходовой теплообмен греющей среды. Технический результат заключается в повышении производительности теплообменника и уменьшении металлоемкости его изготовления. 7 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 703 148 C1

1. Теплообменный аппарат, характеризующийся тем, что он содержит горизонтально ориентированный цилиндрический корпус с днищами выпуклой формы, патрубок подвода и патрубок отвода трубной среды, входной и выходной патрубки межтрубной среды, теплообменные элементы в виде одинарных труб, при этом центральная труба расположена по продольной оси корпуса, а боковые трубы размещены на удалении от продольной оси на равном расстоянии друг от друга, концевые участки труб жестко закреплены в противоположно расположенных отверстиях в днищах, при этом с одной стороны корпуса центральная труба соединена с патрубком подвода трубной среды, а боковые трубы соединены с вводами сборного коллектора, выход которого соединен с патрубком отвода трубной среды, с другой стороны корпуса центральная труба соединена с входом распределительного коллектора, отводы которого соединены с боковыми трубами, с обеспечением возможности протекания трубной среды в прямом направлении через центральную трубу и в обратном направлении через боковые трубы.

2. Теплообменный аппарат по п. 1, отличающийся тем, что сборный коллектор выполнен в виде цилиндра, торцевая сторона цилиндра в направлении днища закрыта сферической крышкой, другая торцевая сторона цилиндра является выходом сборного коллектора, а по цилиндрической поверхности расположены вводы сборного коллектора.

3. Теплообменный аппарат по п. 1, отличающийся тем, что распределительный коллектор выполнен в виде цилиндра, торцевая сторона цилиндра в направлении днища является входом распределительного коллектора, другая торцевая сторона цилиндра закрыта сферической крышкой, а по цилиндрической поверхности расположены отводы распределительного коллектора.

4. Теплообменный аппарат по п. 1, отличающийся тем, что входной патрубок межтрубной среды расположен сверху корпуса около днища со стороны сборного коллектора, а выходной патрубок межтрубной среды расположен снизу корпуса около днища со стороны распределительного коллектора.

5. Теплообменный аппарат по п. 1, отличающийся тем, что на корпусе установлена по крайней мере одна колба для термодатчика.

6. Теплообменный аппарат по п. 1, отличающийся тем, что на концевом участке верхних труб со стороны сборного коллектора установлен по крайней мере один воздухоотводчик.

7. Теплообменный аппарат по п. 1, отличающийся тем, что на концевом участке нижней трубы со стороны сборного коллектора установлен сливной патрубок трубной среды.

8. Теплообменный аппарат по п. 1, отличающийся тем, что на корпусе, сборном и распределительном коллекторах установлен утеплитель с защитным кожухом.

Документы, цитированные в отчете о поиске Патент 2019 года RU2703148C1

ПРЯМОТОЧНЫЙ ТЕПЛООБМЕННЫЙ АППАРАТ СЕМЕНИХИНА 2012
  • Семенихин Сергей Петрович
RU2546904C2
ТЕПЛООБМЕННИК 2009
  • Шамароков Александр Сергеевич
  • Трещенков Алексей Николаевич
  • Жингель Владимир Иосифович
  • Андреев Леонид Михайлович
RU2387936C1
ТЕПЛООБМЕННИК 1996
  • Мирзоян Г.А.
  • Степин Н.М.
  • Беляков В.К.
  • Мирзоян С.А.
  • Горшков С.Н.
  • Янкин Е.Н.
  • Ливчак В.И.
  • Горлов М.В.
RU2133004C1
СПОСОБ КОНТРОЛЯ УПРУГИХ СВОЙСТВ ПОКРЫТИЙ ВАЛОВ 2011
  • Паршуков Василий Евгеньевич
  • Туцкая Татьяна Павловна
  • Гатаулин Руслан Агрессович
  • Фомин Юрий Григорьевич
RU2459189C1
Вертикальный кожухотрубчатый теплообменник 1983
  • Гарин Вадим Александрович
  • Гусаров Вадим Николаевич
  • Мазаев Виктор Васильевич
  • Мичудо Галина Григорьевна
  • Мосцепан Владимир Константинович
SU1185044A1
WO 2017116251 А1, 06.07.2017.

RU 2 703 148 C1

Авторы

Абубикеров Даниил Рафикович

Матвеев Андрей Павлович

Подсекин Александр Валентинович

Рогов Юрий Васильевич

Даты

2019-10-16Публикация

2018-12-26Подача