Способ повышения надежности гибридных и монолитных интегральных схем Российский патент 2018 года по МПК G01R31/28 

Описание патента на изобретение RU2664759C1

Область техники

Изобретение относится к способу повышения надежности полупроводниковых монолитных и гибридных интегральных схем (ИС) в заданных условиях эксплуатации.

Уровень техники

Из уровня техники известен способ повышения надежности наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур путем определения стойкости к радиационным и температурным воздействиям (см. RU 2606174 С1, кл. G01R 31/28, 10.01.2017).

Сущность известного изобретения заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых увеличивается с тем, чтобы получить вызванные ими изменения вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов радиационных и температурных воздействий путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе скорости деградации РТД. Технический результат - повышение надежности путем определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода.

Недостатком известного способа является ограниченность применения.

Наиболее близким аналогом (прототипом) является способ повышения надежности полупроводниковых монолитных и гибридных интегральных схем путем искусственного старения, в результате которого происходит деградация параметров материалов и структуры ИС и, как следствие, изменение их информативных параметров (см. US 2014/088947, кл. G01R 31/26, 27.03.2014).

В известном способе осуществляют ускоренное стресс-тестирование. Способ осуществляют с помощью встроенного в микросхему микропроцессора, который избирательно чередует работу испытуемой интегральной схемы между тестовым режимом и стрессовым режимом. Микросхема запитывается таким образом, что в режиме стресса испытуемая схема работает при более высоком уровне напряжения, чем функциональная схема. Результаты тестирования интегральной схемы используют для моделирования характеристик деградации и прогнозирования момента времени отказа схемы.

Недостатком прототипа является ограниченность его использования только в условиях эксплуатации.

Раскрытие изобретения

Задача, на решение которой направлено изобретение, заключается в повышении времени наработки на отказ гибридных и монолитных ИС за счет учета технологических разбросов параметров конструкции и закономерностей их деградации под действием внешних и внутренних факторов при эксплуатации и, соответственно, повышении надежности радиоэлектронной аппаратуры на их основе в условиях действия перечисленных факторов.

Поставленная задача решается тем, что предложен способ повышения надежности ИС путем искусственного старения, в результате которого происходит деградация параметров материалов и структуры ИС и, как следствие, изменение их информативных параметров. При этом определяют скорость деградации информативных параметров ИС, строят функцию плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС, определяют методом имитационного моделирования на основе полученных закономерностей и скорости деградации информативных параметров ИС траектории их изменения во времени, определяют моменты времени параметрических отказов всех ИС в партии, статистически обрабатывают моменты времени параметрических отказов всех ИС партии и определяют среднюю наработку на отказ, корректируют номинальные информативные параметры ИС по критерию максимизации средней наработки на отказ, в течение которой функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений, и синтезируют новые параметры конструкции ИС, обеспечивающие новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров.

Причем искусственное старение ИС ведут циклами: воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

Причем искусственное старение ИС ведут циклами: ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров, ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

Перечень чертежей

На фиг. 1 показаны вольт-амперные характеристики РТД, полученные в результате циклов термических воздействий и циклов ионизирующих излучений гамма-квантами.

На фиг. 2 показан пучок траекторий информативного параметра X(t) во времени.

На фиг. 3 показана схема формирования постепенного отказа ИС.

На фиг. 4 показана функция плотности вероятности информативного параметра ƒ(Y) с учетом технологических погрешностей параметров конструкции ИС.

На фиг. 5 показана функция плотности вероятности информативного параметра устройства ƒ(Y) в начальный момент времени to и после заданной наработки в момент времени t1.

Осуществление изобретения

Способ повышения надежности гибридных и монолитных интегральных схем осуществляется следующим образом.

Для определения кинетики параметров ИС под действием дестабилизирующих факторов эксплуатации проводится искусственное старение, заключающееся в воздействии на ИС повышенной температуры и ионизирующих излучений (ИИ), в результате которых происходит деградация материалов ИС и, как следствие, изменение их электрических характеристик. В результате действия ИИ в гетероструктуру и в контактные области ИС вносятся дефекты, ускоряющие диффузионные процессы в них. Под действием повышенной температуры диффузионные процессы в гетероструктуре и контактных областях также ускоряются, что является причиной дополнительных изменений информативных параметров.

В качестве информативных параметров полупроводниковых приборов, таких как транзисторы, диоды и др., наиболее часто используются их вольт-амперные характеристики (ВАХ), из которых можно получить такие параметры, как дифференциальное сопротивление в рабочей области, крутизна, напряжение отсечки и др. В качестве информативных параметров устройств на основе диодов и транзисторов могут использоваться их показатели назначения, такие как коэффициент усиления для усилителей, потери преобразования и ширина динамического диапазона для смесителей.

Радиационное облучение может производиться с помощью источника γ-квантов 60Со, например, ГИК-17М. Для температурного воздействия может использоваться лабораторная электронагревательная печь, например, СНОЛ 6/11.

Доза ИИ, температура и длительность термического воздействия выбираются такими, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений. Опытным путем установлено, что искусственное старение ИС оптимально вести циклами, например воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров и/или ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров, ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров.

Изменение ВАХ диодов и транзисторов регистрируется измерительным прибором (например, совместное использование микрозондового устройства (МЗУ) «ЛОМО 900072» и источника питания с цифровым управлением «Agilent 3640А DC Power Supply»). Изменение информативных параметров функциональных устройств регистрируется измерительными приборами, соответствующими выбранным информативным параметрам.

Пример изменения информативных параметров, в результате которых получается кинетика информативных параметров, приведен на фиг. 1. На оси абсцисс приведены значения напряжения U в вольтах, на оси ординат приведены значения тока I в амперах.

На фигуре 1 показаны кривые 1 - ВАХ до ионизирующих и температурных воздействий, 2 - ВАХ после 1-го цикла ионизирующих и температурных воздействий, 3 - ВАХ после 2-го цикла ионизирующих и температурных воздействий, 4 - ВАХ после 3-го цикла ионизирующих и температурных воздействий, 5 - ВАХ после 4-го цикла ионизирующих и температурных воздействий, 6 - ВАХ после 5-го цикла ионизирующих и температурных воздействий.

На основе изменения информативных параметров определяется скорость их деградации.

На основе полученных закономерностей и скорости деградации информативных параметров ИС строят траектории их изменения во времени. На фиг. 2 показан пучок траекторий информативного параметра X(t) во времени. Точки выхода функции X(t) за пределы заданных ограничений Хв фиксируются как моменты времени параметрических отказов ti.

Методом имитационного моделирования на основе полученных траекторий изменений во времени определяют моменты времени параметрических отказов ti всех ИС в партии, статистически обрабатывают моменты времени параметрических отказов и определяют среднюю наработку на отказ , где n - количество случайных реализаций функции X(t), tcp - средняя наработка партии ИС на отказ. Общая схема формирования постепенного отказа ИС показана на фиг. 3, где ƒ(t) - функция плотности вероятности наработки на отказ.

Строится функция плотности вероятности информативных параметров ƒ(Y) с учетом технологических погрешностей параметров конструкции ИС (см. фиг. 4).

Методы и алгоритмы для построения функции плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС рассматриваются в учебном пособии Технологическая оптимизация микроэлектронных устройств СВЧ: учебное, пособие / А.Г. Гудков, С.А. Мешков, М.А. Синельщикова, Е.А. Скороходов. - М., Изд-во МГТУ им. Н.Э. Баумана, 2014, с. 16-20.

Корректировка номинальных информативных параметров ИС по критерию максимизации средней наработки на отказ, в течение которой функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений, является задачей оптимизации. На фиг. 5 представлена графическая интерпретация решаемой задачи. На ней показана функция плотности вероятности информативного параметра устройства ƒ(Y) в начальный момент времени t0 и после заданной наработки в момент времени t1. Задача ставится следующим образом. Целевая функция: - вероятность выхода годных ИС, где , - вектор параметров конструкции ИС; - вектор информативных электрических параметров ИС, t - время эксплуатации, - вектор разбросов (технологическая точность) параметров конструкции ИС; - вектор допустимых отклонений (допуски) на информативные параметры ИС.

,

ƒ(Y) - функция плотности вероятности информативных параметров ИС;

YMIN, YMAX - границы поля допуска на информативные параметры ИС,

YNOM - номинал информативного параметра ИС;

YOPT - новые значения номинала информативного параметра ИС;

- вероятность попадания параметра Yi в элементарный интервал ΔYi.

Критерий оптимальности: max .

Управляемые параметры: номиналы информативных параметров Y.

Ограничения: , , , , где Оk, От - ограничения конструкторского и технологического характера. Задача решается методами одномерной условной оптимизации, описанными в книге Норенков И.П. Основы автоматизированного проектирования: Учебник для вузов. 2-е изд., М., Издательство МГТУ им. Н.Э. Баумана, 2002, с. 157-170.

В результате решения задачи оптимизации получают новые значения номиналов Y0PT, которым соответствует max РГ в течение наработки от t0 до t1.

Затем осуществляется синтез параметров конструкции X, обеспечивающих новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров Y0PT. Синтез ведется итерационными методами с использованием методов оптимизации нулевого, первого, второго порядка, которые рассматриваются в книге Норенков И.П. Основы автоматизированного проектирования: Учебник для вузов. 2-е изд., М., Издательство МГТУ им. Н.Э. Баумана, 2002, с. 157-170.

В результате указанного выше синтеза новых параметров конструкции ИС решается поставленная задача, а именно обеспечиваются новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров и достигается повышение времени наработки на отказ гибридных и монолитных ИС за счет учета технологических разбросов параметров конструкции и закономерностей их деградации под действием внешних и внутренних факторов при эксплуатации и, соответственно, повышение надежности радиоэлектронной аппаратуры на их основе в условиях действия перечисленных факторов.

Похожие патенты RU2664759C1

название год авторы номер документа
Способ повышения надежности и качества функционирования партии гибридных и монолитных интегральных схем 2018
  • Мешков Сергей Анатольевич
RU2684943C1
Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур 2015
  • Мешков Сергей Анатольевич
  • Макеев Мстислав Олегович
  • Гудков Александр Григорьевич
  • Иванов Юрий Александрович
  • Иванов Антон Иванович
  • Шашурин Василий Дмитриевич
  • Синякин Владимир Юрьевич
  • Вьюгинов Владимир Николаевич
  • Добров Владимир Анатольевич
  • Усыченко Виктор Георгиевич
RU2606174C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ СВЧ К ВОЗДЕЙСТВИЮ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2015
  • Усыченко Виктор Георгиевич
  • Вьюгинов Владимир Николаевич
  • Гудков Александр Григорьевич
  • Добров Владимир Анатольевич
  • Кудряшова Татьяна Юрьевна
  • Мешков Сергей Анатольевич
  • Мещеряков Александр Владимирович
  • Маржановский Иван Николаевич
RU2602416C1
Способ контроля параметрической безотказности изделий по параметрам состояния 2020
  • Окороков Максим Владимирович
  • Сухорученков Борис Иванович
  • Тацышин Николай Николаевич
RU2742282C1
СПОСОБ ИСПЫТАНИЙ НА НАДЕЖНОСТЬ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ 1991
  • Воронцов Б.А.
  • Куликов И.В.
RU2100817C1
СПОСОБ РАДИАЦИОННО-СТИМУЛИРОВАННОГО ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛЬНО НЕСТАБИЛЬНЫХ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ 2008
  • Попиков Петр Иванович
  • Жарких Александр Петрович
  • Володин Иван Николаевич
RU2375719C1
СПОСОБ ОТБОРА ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ ПО СТОЙКОСТИ ИЛИ НАДЕЖНОСТИ 1999
  • Васильева З.Ф.
  • Коскин В.В.
  • Лукица И.Г.
  • Лысов В.Б.
  • Малинин В.Г.
  • Матвеева Л.А.
RU2168735C2
Способ определения кинематических параметров движения летательного аппарата 2015
  • Гладышев Владимир Олегович
  • Портнов Дмитрий Игоревич
RU2611559C1
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали 2017
  • Комшин Александр Сергеевич
  • Сырицкий Антони Борисович
  • Потапов Константин Геннадьевич
  • Кудрявцев Евгений Александрович
RU2680632C1
СПОСОБ РАЗДЕЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ ПО РАДИАЦИОННОЙ СТОЙКОСТИ И НАДЕЖНОСТИ 2003
  • Анашин В.С.
  • Попов В.Д.
RU2254587C1

Иллюстрации к изобретению RU 2 664 759 C1

Реферат патента 2018 года Способ повышения надежности гибридных и монолитных интегральных схем

Изобретение относится к способу повышения надежности полупроводниковых монолитных и гибридных интегральных схем (ИС) в заданных условиях эксплуатации. Сущность: определяют скорость деградации информативных параметров ИС в результате искусственного старения. Строят функцию плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС. Определяют методом имитационного моделирования на основе полученных закономерностей и скорости деградации информативных параметров ИС траектории их изменения во времени. Определяют моменты времени параметрических отказов всех ИС в партии. Статистически обрабатывают моменты времени параметрических отказов всех ИС партии и определяют среднюю наработку на отказ. Корректируют номинальные информативные параметры ИС по критерию максимизации средней наработки на отказ, в течение которого функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений. Синтезируют новые параметры конструкции ИС, обеспечивающие новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров. Технический результат: повышение времени наработки на отказ гибридных и монолитных ИС. 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 664 759 C1

1. Способ повышения надежности гибридных и монолитных интегральных схем (ИС) путем искусственного старения, в результате которого происходит деградация параметров материалов и структуры ИС и, как следствие, изменение их информативных параметров, отличающийся тем, что

определяют скорость деградации информативных параметров ИС,

строят функцию плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС,

определяют методом имитационного моделирования на основе полученных закономерностей и скорости деградации информативных параметров ИС траектории их изменения во времени,

определяют моменты времени параметрических отказов всех ИС в партии,

статистически обрабатывают моменты времени параметрических отказов всех ИС партии и определяют среднюю наработку на отказ,

корректируют номинальные информативные параметры ИС по критерию максимизации средней наработки на отказ, в течение которой функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений,

и синтезируют новые параметры конструкции ИС, обеспечивающие новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров.

2. Способ по п. 1, отличающийся тем, что искусственное старение ИС ведут циклами: воздействие повышенной температуры около 150°С в течение 1-20 час, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

3. Способ по п. 1, отличающийся тем, что искусственное старение ИС ведут циклами: ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров, ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

Документы, цитированные в отчете о поиске Патент 2018 года RU2664759C1

US 20140088947 A1, 27.03.2014
Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур 2015
  • Мешков Сергей Анатольевич
  • Макеев Мстислав Олегович
  • Гудков Александр Григорьевич
  • Иванов Юрий Александрович
  • Иванов Антон Иванович
  • Шашурин Василий Дмитриевич
  • Синякин Владимир Юрьевич
  • Вьюгинов Владимир Николаевич
  • Добров Владимир Анатольевич
  • Усыченко Виктор Георгиевич
RU2606174C1
СПОСОБ ОЦЕНКИ СТОЙКОСТИ ЦИФРОВОЙ ЭЛЕКТРОННОЙ АППАРАТУРЫ К ВОЗДЕЙСТВИЮ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ (ВАРИАНТЫ) 2014
  • Киселев Владимир Константинович
RU2578053C1
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ПАРТИЙ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ 2006
  • Горлов Митрофан Иванович
  • Ануфриев Дмитрий Леонидович
  • Котова Мария Сергеевна
RU2326394C1
US 2017177434 A1, 22.06.2017
US 20160116529 A1, 28.04.2016
CN 105203942 A, 30.12.2015
US 2012105240 A1, 03.05.2012.

RU 2 664 759 C1

Авторы

Мешков Сергей Анатольевич

Даты

2018-08-22Публикация

2017-11-29Подача