СПОСОБ УПРАВЛЕНИЯ ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ Российский патент 2018 года по МПК F02C9/28 

Описание патента на изобретение RU2665567C1

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива.

Наиболее близким по технической сущности к заявляемому изобретению является способ управления форсажной камерой сгорания, включающий измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания [Турбореактивный двигатель с форсажной камерой сгорания АЛ-31Ф. Учебное пособие. Под ред. А.П. Назарова. - М.: ВВИА, 1987, с. 313].

Недостатком данного способа является низкая эффективность управления рабочим процессом камеры сгорания [Кудрявцев А.В., Медведев В.В. Форсажные камеры и камеры сгорания ПВРД. Инженерные методики расчета характеристик. М., ЦИАМ, 2013, 131 с.], обусловленная влиянием условий внешней среды на полноту сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 132].

Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания, за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и управления положения топливного коллектора перед стабилизатором пламени.

Указанный технический результат достигается тем, что в известном способе управления форсажной камерой сгорания газотурбинного двигателя летательного аппарата, включающем измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания, согласно изобретению дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением топливного коллектора в форсажной камере сгорания.

Сущность изобретения заключается в том, что дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением топливного коллектора в форсажной камере сгорания.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, 616 с.], что значение положения рычага управления двигателем является режимным параметром и обуславливает количество подаваемого топлива в форсажную камеру сгорания.

На фиг. 1 приведена программа управления величиной подаваемого топлива в форсажную камеру сгорания в зависимости от режима работы двигателя, где обозначено: αруд min - минимальное значение положения рычага управления двигателем; αруд max - максимальное значение положения рычага управления двигателем; T*в max - линия максимального расхода топлива при максимальном значение температуры воздуха на входе двигателя; T*в - линия расчетного количества топлива при расчетном значении температуры воздуха на входе двигателя; T*в min - линия минимального расхода топлива при минимальном значении температуры воздуха на входе двигателя; Gmф мф - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Gmф мф max - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя; G мф min - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gmф nф max - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gmф nф - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Gmф nф min - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя.

Из фиг. 1 видно, что каждому значению величины положения рычага управления двигателем соответствует заданное значение величины подаваемого топлива. При изменении положения рычага управления двигателем от режима работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» до режима работы двигателя «ПОЛНЫЙ ФОРСАЖ» расход топлива в форсажную камеру сгорания увеличивается, обеспечивая заданный режим работы двигателя. Из фиг. 1 также видно, что в зависимости от температуры воздуха на входе двигателя: чем выше температура на входе двигателя, тем больше расход топлива.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.], что для заданного количества подаваемого топлива при сохранении постоянного расхода топлива на выходе из форсажной камеры сгорания изменяется величина полного давления в зависимости от условий внешней среды, как описано в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 165-168. Повышение полного давления на выходе из форсажной камеры сгорания при сохранении неизменного расхода топлива свидетельствует о снижении эффективности сжигания топлива за счет ухудшения образования топливовоздушной смеси перед стабилизатором пламени и снижении коэффициента полноты сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания.

В ходе исследований эффективности организации рабочего процесса в форсажной камере сгорания, проводимых в Военном научно-исследовательском центре Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» установлено, что требуемое значение коэффициента полноты сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания обеспечивается корректировкой положения топливного коллектора относительно стабилизатора пламени, которое зависит от величины полного давления газового потока на выходе из форсажной камеры сгорания, что обусловлено влиянием параметров газового потока на образование топливовоздушной смеси.

Поэтому согласно изобретению измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и в зависимости от его значения и количества подаваемого топлива управляют положением топливного коллектора. На фиг. 2 представлена программа управления положением топливного коллектора в зависимости от количества подаваемого топлива в форсажную камеру сгорания, где обозначено: Gmф nф max - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gmф мф min - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; P*ф min - линия положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; P*ф max - линия положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; P*ф - линия положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания; Lкол мф min - значение положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф - значение положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф max - значение положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол пф max - значение положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф - значение положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол nф min - значение положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ».

Для обеспечения корректировки положения топливного коллектора по величине полного давления газового потока на выходе из форсажной камеры сгорания в третьем программно-задающем устройстве по сигналам от датчика положения рычага управления двигателем и датчика температуры воздуха на входе двигателя согласно зависимости, описанной на фиг. 1, осуществляется расчет количества подаваемого топлива в форсажную камеру сгорания. Затем вычисляется относительный расход топлива, как указано в: Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 131. Согласно зависимостей, приведенных в: Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. – М.: Машиностроение, 2002, с. 135 определяется подогрев газового потока, зависящий от относительного расхода топлива. Величина полного давления на выходе из форсажной камеры сгорания зависит от подогрева газового потока согласно приведенным в: Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 167 зависимостям. Тем самым заложенный алгоритм расчета обеспечивает выработку заданного значения величины полного давления на выходе из форсажной камеры сгорания.

Таким образом, на основании рассчитанного количества, подаваемого в форсажную камеру сгорания топлива, определяется заданное значение полного давления газового потока на выходе из форсажной камеры сгорания и передается в третью схему сравнения, на второй вход которой поступает сигнал с датчика полного давления газового потока на выходе из форсажной камеры сгорания. В качестве датчика полного давления газового потока на выходе из форсажной камеры сгорания может быть использован, например, пьезоэлектрический датчик давления EL-SCADA RAV [https://el-scada.ru/davlenie/dinamicheskoe-davlenie/pezoelektricheskie-datchiki-dinamicheskogo-davleniya дата обращения 31.05.2017]. Если действительное значение полного давления газового потока на выходе из форсажной камеры сгорания отличается от заданного, третья схема сравнения вырабатывает сигнал для третьего регулятора, в котором формируется управляющее воздействие на корректировку положения топливного коллектора перед стабилизатором пламени форсажной камеры сгорания. При изменении положения топливного коллектора обеспечивается эффективное образование топливовоздушной смеси и высокое значение полноты сгорания топлива в циркуляционной зоне потока. Заданное значение коэффициента полноты сгорания топлива в циркуляционной зоне находится в пределах от 0,8 до 0,85 см, например [Кулагин В. В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003, с. 161].

Этим достигается указанный в изобретении технический результат.

На фиг. 3 приведена структурная схема возможного варианта устройства, с помощью которого может быть реализован способ управления форсажной камерой сгорания, на фиг. 3 обозначено: 1.1 - датчик положения рычага управления двигателем; 1.2 - датчик полного давления воздуха за компрессором; 1.3 - датчик температуры воздуха на входе двигателя; 1.4 -датчик полного давления газового потока за форсажной камерой сгорания; 2.1 - первое программно-задающее устройство; 2.2 - второе программно-задающее устройство; 2.3 - третье программно-задающее устройство; 3.1 - первая схема сравнения; 3.2 - вторая схема сравнения; 3.3 - третья схема сравнения; 4.1 - первый регулятор; 4.2 - второй регулятор; 4.3 - третий регулятор.

Назначение датчиков положения рычага управления двигателем 1.1, датчика полного давления воздуха за компрессором 1.2, датчика температуры воздуха на входе двигателя 1.3, датчика полного давления газового потока за форсажной камерой сгорания 1.4 ясны из их названия. Первое программно-задающее устройство 2.1, первая схема сравнения 3.1, первый регулятор 4.1, второе программно-задающее устройство 2.2, вторая схема сравнения 3.2, второй регулятор 4.2 работают аналогично прототипу, для выработки управляющего воздействия в первом программно-задающем устройстве 2.1 по сигналу от датчика положения рычага управления двигателем 1.1 вырабатывается сигнал заданного значения перемещения золотника дозирующего крана, который поступает в первую схему сравнения 3.1, на второй вход которой поступает сигнал о текущем значении положения золотника дозирующего крана, если величина текущего значения положения отличается от заданного, то в первом регуляторе 4.1 вырабатывается управляющее воздействие для перемещения золотника дозирующего крана в требуемое положение для обеспечения заданной величины подаваемого топлива. При этом во втором программно-задающем устройстве 2.2 по сигналу от датчика температуры на входе двигателя 1.3, где изменение температуры воздуха происходит за счет изменения условий внешней среды (высоты и скорости полета летательного аппарата), вырабатывается заданное значение поворота золотника дозирующего крана и поступает на первый вход второй схемы сравнения 3.2, на второй вход которой поступает текущее значение положения угла поворота золотника дозирующего крана, если заданное значение не соответствует текущему положению во втором регуляторе 4.2, вырабатывается управляющее воздействие на изменение угла поворота золотника дозирующего крана. От датчика полного давления воздуха за компрессором 1.2 поступает сигнал на второй вход второго программно-задающего устройства 2.2, который обеспечивает контроль возможности перехода системы управления от режима «МАКСИМАЛЬНЫЙ» на «МИНИМАЛЬНЫЙ ФОРСАЖ». Таким образом, осуществляется коррекция величины подаваемого топлива в форсажную камеру сгорания при изменении условий внешней среды.

Третье программно-задающее устройство 2.3 предназначено для выработки заданного значения величины полного давления газового потока на выходе из форсажной камеры сгорания на основании получаемых данных от датчика положения рычага управления двигателем 1.1, датчика температуры воздуха на входе двигателя 1.3 и расчета по численным зависимостям величины полного давления газового потока на выходе из форсажной камеры сгорания от количества, подаваемого в форсажную камеру сгорания, топлива. Третья схема сравнения 3.3 на основании получаемых сигналов о величине заданного третьим программно-задающим устройством 2.3 и текущего, получаемого от датчика полного давления газового потока за форсажной камерой сгорания 1.4, значения полного давления газового потока на выходе из форсажной камеры сгорания вырабатывает сигнал корректировки положения топливного коллектора. Третий регулятор 4.3 на основании полученного сигнала производит корректировку положения топливного коллектора.

Похожие патенты RU2665567C1

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2017
  • Маяцкий Сергей Александрович
  • Пахольченко Андрей Александрович
  • Грасько Тарас Васильевич
  • Колесников Александр Сергеевич
  • Тесля Денис Николаевич
  • Хакимов Тимерхан Мусагитович
RU2708476C2
СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ 2017
  • Маяцкий Сергей Александрович
  • Грасько Тарас Васильевич
  • Тесля Денис Николаевич
RU2699324C2
СПОСОБ ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ 2018
  • Маяцкий Сергей Александрович
  • Грасько Тарас Васильевич
  • Тесля Денис Николаевич
RU2699322C2
СПОСОБ ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ 2017
  • Маяцкий Сергей Александрович
  • Грасько Тарас Васильевич
  • Тесля Денис Николаевич
RU2700321C2
СИСТЕМА УПРАВЛЕНИЯ ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2017
  • Маяцкий Сергей Александрович
  • Пахольченко Андрей Александрович
  • Грасько Тарас Васильевич
  • Колесников Александр Сергеевич
  • Тесля Денис Николаевич
  • Хакимов Тимерхан Мусагитович
RU2665569C1
СИСТЕМА УПРАВЛЕНИЯ ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2017
  • Маяцкий Сергей Александрович
  • Пахольченко Андрей Александрович
  • Грасько Тарас Васильевич
  • Колесников Александр Сергеевич
  • Тесля Денис Николаевич
  • Хакимов Тимерхан Мусагитович
RU2708474C2
СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ 2018
  • Маяцкий Сергей Александрович
  • Грасько Тарас Васильевич
  • Тесля Денис Николаевич
RU2699323C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2014
  • Добрянский Георгий Викторович
  • Мельникова Нина Сергеевна
  • Потапов Алексей Юрьевич
  • Денисенко Дмитрий Александрович
  • Гуминский Анатолий Анатольевич
  • Крутяков Сергей Станиславович
RU2555784C1
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2438031C2
СПОСОБ ОТЛАДКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ФОРСАЖНОЙ КАМЕРОЙ 2008
  • Черноморский Вадим Семенович
RU2383001C1

Иллюстрации к изобретению RU 2 665 567 C1

Реферат патента 2018 года СПОСОБ УПРАВЛЕНИЯ ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и управления положением топливного коллектора перед стабилизатором пламени. Способ управления форсажной камерой сгорания, при котором дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением топливного коллектора в форсажной камере сгорания. 3 ил.

Формула изобретения RU 2 665 567 C1

Способ управления форсажной камерой сгорания, включающий измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания, отличающийся тем, что дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением топливного коллектора в форсажной камере сгорания.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665567C1

Способ очистки нефти и нефтяных продуктов и уничтожения их флюоресценции 1921
  • Тычинин Б.Г.
SU31A1
НАЗАРОВА
М.: ВВИА, 1987, с
Способ получения древесного угля 1921
  • Поварнин Г.Г.
  • Харитонова М.В.
SU313A1
СПОСОБ ЗАПУСКА ФОРСАЖНОЙ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1991
  • Божков А.И.
RU2027887C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГАСАНИЯ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ 2010
  • Альтшуль Семен Давидович
  • Гайдаш Дмитрий Михайлович
  • Черников Андрей Викторович
RU2430252C1
US 5142860 A1, 01.09.1992.

RU 2 665 567 C1

Авторы

Маяцкий Сергей Александрович

Пахольченко Андрей Александрович

Грасько Тарас Васильевич

Колесников Александр Сергеевич

Тесля Денис Николаевич

Хакимов Тимерхан Мусагитович

Даты

2018-08-31Публикация

2017-08-15Подача