УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ Российский патент 2018 года по МПК G01N33/483 G01N1/10 G01N21/64 G01N35/00 

Описание патента на изобретение RU2666209C2

Изобретение относится к приборам для качественного и количественного анализа нуклеиновых кислот (ДНК и РНК), в которых использован метод полимеразной цепной реакции (ПЦР) в реальном времени. Такие приборы широко используются в медицинской практике и в исследовательских целях:

- при диагностике инфекционных, онкологических и генетических заболеваний человека и животных;

- при анализе продуктов, содержащих генетически модифицированные организмы;

- при мониторинге экспрессии генов с диагностическими и исследовательскими целями и т.д.

Известен патент на прибор и метод для автоматизированной термообработки образцов жидкостей (патент США №8797526 B2, кл. G01N 1/10, 05.08.2014 г.). В описании этого прибора приведены традиционные технические решения. Прибор содержит термоблок, оснащенный системой контроля температуры и контейнером для множества пробирок с образцами, при этом конструкция контейнера обеспечивает термический контакт контейнера с установленными в нем пробиркам. Прибор содержит модуль регистрации света, излучаемого образцами и устройство сопряжения с множеством оптоволоконных световодов для передачи излучаемого света на устройство регистрации. Прибор содержит устройство перемещения модуля регистрации света и контейнера, которое позволяет варьировать расстояние между ними для того, чтобы устанавливать пробирки с образцами в контейнер или вынимать их оттуда, а также регистрировать свет, излучаемый образцами, содержащимися в пробирках, установленных в контейнере.

Контейнер имеет тепловой контакт через плиту основания с верхней поверхностью термоэлектрического элемента (элемента Пельтье). Нижняя поверхность термоэлектрического элемента соединена с теплообменником (радиатором). Выше ячеек с образцами расположена нагревательная плита с нагревательным элементом (термокрышка). В отверстиях термокрышки расположены оптоволоконные световоды возбуждения и приема излучения.

Согласно формуле изобретения предложен метод автоматизированной термообработки образцов жидкостей, который включает в себя метод варьирования расстояния между терморегулируемым контейнером для загрузки множества пробирок с образцами и концами оптоволоконных световодов. Остальные отличительные признаки относятся к модулю регистрации света: каждый оптоволоконный световод имеет первый и второй конец, каждый первый и каждый второй конец оптоволоконного световода фиксируются относительно друг друга и служат для передачи света, варьирование межячеечного расстояния позволяет загружать и выгружать пробирки и регистрировать свет от образцов, содержащихся в одной или нескольких пробирках, установленных в контейнере, причем вторые концы световодов располагаются стохастически.

Недостаток этого прибора и метода заключается в отсутствии технических решений, направленных на повышение скоростей нагрева и охлаждения образцов и выравнивания температуры пробирок с реакционными смесями.

Известен прибор The LightCycler® 480 Real-Time PCR System (www.roche-applied-science.com), в котором использована прослойка типа теплового насоса, обеспечивающая эффективный перенос тепла между элементами Пельтье и радиатором. Держатель пробирок выполнен из серебра.

Недостатком этого прибора является низкая скорость нагрева и охлаждения образцов, поскольку принятые меры незначительно повышают скорость нагрева и охлаждения образцов.

Известен держатель пробирок с реагентами с уменьшенной массой и повышенной скоростью изменения температуры образцов, используемых при термоциклировании при проведении полимерной цепной реакции (патент США №7632464 B2, кл. США 422/99, 422/102, 422/130, 15.12.2009 г.). Уменьшение массы достигается за счет добавления отверстий в двух перпендикулярных направлениях.

Недостатки этого устройства заключаются в незначительном уменьшении массы и теплоемкости держателя пробирок и в незначительном повышении скорости изменения температуры, а также в отсутствии технических решений для выравнивания температуры пробирок с реакционными смесями.

Известно устройство, имеющее название «Облегченная матрица для плашек, применяемая в ПЦР-амплификаторе» (патент на полезную модель РФ №133835, МПК C12M 1/38, опубл. 27.10.2013 г), Матрица для плашек с реагентами, используемых при термоциклировании при проведении полимеразной цепной реакции, отличается тем, что она изготовлена из алюминиевого сплава, а между лунками для плашек с реагентами во взаимно перпендикулярных направлениях выполнены пазы треугольной формы.

Недостаток этого устройства заключается в уменьшении поверхности матрицы для плашек с реагентами, прилегающей к элементам Пельтье, что приводит к снижению скорости нагрева и охлаждения образцов. Другой недостаток - отсутствие технических решений для выравнивания температуры пробирок с реакционными смесями.

Известно устройство для одновременного контроля в реальном масштабе времени множества амплификации нуклеиновой кислоты (патент на изобретение РФ №2304277, МПК G01N 21/63, опубл. 10.08.2007 г.).

Устройство содержит термоциклер с теплопроводящим элементом, термокрышкой, устройством автоматического управления температурным режимом, оптической системой. В теплопроводящем элементе имеются углубления для пробирок с реакционными смесями. Оптическая система включает источник излучения, волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок и детектор. Световоды выполнены в виде оптических волокон с коаксиально расположенными центральной частью и периферийной частью для сбора флуоресценции. Центральная часть световода апертурно согласована с количеством реакционной смеси в пробирках.

Недостатком этого устройства является отсутствие технических решений, повышающих скорость циклического изменения температуры и выравнивания температуры пробирок с реакционными смесями.

Известно устройство для одновременного контроля в реальном масштабе времени множества амплификации нуклеиновой кислоты (патент на изобретение РФ №2418289, МПК G01N 21/64, опубл. 10.05.2011 г.).

Устройство содержит термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, термокрышку и устройство автоматического управления температурным режимом. Также устройство содержит оптическую систему, включающую источник излучения, коаксиальные волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок, детектор для детектирования флуоресценции. При этом центральная передающая свет возбуждения часть световода апертурно согласована с количеством реакционной смеси в пробирках, установленных в углублениях теплопроводящего элемента. Причем объем пробирок соответствует максимальному объему реакционной смеси. При этом между пробирками и термокрышкой установлена сменная теплоизолирующая перегородка с отверстиями, оси которых совпадают с осями пробирок, а диаметры равны внешнему диаметру световодов для передачи излучения флуоресценции из пробирок.

Предлагаемое изобретение решает задачу сокращения времени анализа, повышения чувствительности устройства и уменьшения необходимого для проведения ПЦР количества реакционной смеси.

Недостатком этого устройства является отсутствие технических решений для повышения скоростей нагрева и охлаждения и выравнивания температуры пробирок с реакционными смесями.

Почти во всех известных устройствах автоматического управления температурным режимом приборов, в которых использован метод ПЦР в реальном времени, применяются термоэлектрические элементы (элементы Пельтье), которые обладают эффектом значительного различия скоростей нагрева и охлаждения образцов. Этот эффект объясняется тем обстоятельством, что термоэлектрические элементы обладают для режима охлаждения малой тепловой производительностью (переносом тепловой энергии за единицу времени). В режиме нагрева тепловая производительность этих элементов сильно увеличивается за счет суммирования перенесенной тепловой энергии и тепловой энергии элементов, получаемой от источника питания.

Ближайшим из известных по технической сущности и назначению является устройство для одновременного контроля в реальном масштабе времени множества амплификации нуклеиновой кислоты (заявка на изобретение регистрационный №2015149676 от 19.11.2015 г.).

Устройство содержит термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, термокрышку и устройство автоматического управления температурным режимом, оптическую систему, включающую источник излучения и приемник излучения, коаксиальные волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок, центральная передающая свет возбуждения часть световода апертурно согласована с количеством реакционной смеси в пробирках, установленных в углублениях теплопроводящего элемента, объем пробирок соответствует максимальному объему реакционной смеси, между пробирками и термокрышкой установлена сменная теплоизолирующая перегородка с отверстиями, микропроцессорное устройство управления и персональный компьютер.

Устройство снабжено пневмогидравлической системой, которая содержит две емкости, частично заполненные жидкостью, трубопроводы, воздушный компрессор, четыре электромагнитных клапана, радиаторы и контроллер, воздушные фильтры, при этом теплопроводящий элемент имеет сквозные внутренние каналы.

Пневмогидравлическая система может быть снабжена емкостью, частично заполненной жидкостью, четырьмя электромагнитными или обратными клапанами, двумя поршневыми или мембранными насосами и воздушным фильтром.

Пневмогидравлическая система может быть снабжена емкостью, частично заполненной жидкостью, двумя электромагнитными или обратными клапанами, поршневым или мембранным насосом и воздушным фильтром.

Пневмогидравлическая система соединена трубопроводами с теплопроводящим элементом, который имеет сквозные внутренние каналы.

При работе достигается увеличение скорости изменения температуры в режиме охлаждения за счет протекания жидкости через внутренние каналы теплопроводящего элемента.

Недостатком этого устройства является отсутствие технических решений для повышения скорости нагрева и выравнивания температуры пробирок с реакционными смесями.

Предлагаемое изобретение решает задачу увеличения скорости изменения температуры в режиме нагрева и выравнивания температуры пробирок, тем самым позволяет повысить быстродействие и производительность этого устройства путем сокращения времени анализа, а также уменьшить разброс результатов анализа.

Указанная задача решается за счет того, что известное устройство для одновременного контроля в реальном масштабе времени множества амплификации нуклеиновой кислоты, содержащее термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, который имеет сквозные внутренние каналы, термокрышку, устройство автоматического управления температурным режимом, содержащее термоэлектрические элементы и радиатор, оптическую систему, включающую источник излучения и приемник излучения, коаксиальные волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок, центральная передающая свет возбуждения часть световода апертурно согласована с количеством реакционной смеси в пробирках, установленных в углублениях теплопроводящего элемента, объем пробирок соответствует максимальному объему реакционной смеси, между пробирками и термокрышкой установлена сменная теплоизолирующая перегородка с отверстиями, микропроцессорное устройство управления, персональный компьютер и пневмогидравлическую систему, содержащую контроллер, трубопроводы, две емкости, частично заполненные жидкостью, два радиатора, воздушный компрессор, воздушный фильтр, четыре электромагнитных клапана, в которой контроллер соединен с микропроцессорным устройством управления, воздушным компрессором и четырьмя электромагнитными клапанами, воздушный компрессор соединен трубопроводами через воздушный фильтр и первый электромагнитный клапан с первой емкостью, частично заполненной жидкостью, первая емкость соединена трубопроводом через второй электромагнитный клапан с окружающей средой, первая емкость через третий и четвертый электромагнитные клапаны соединена трубопроводами с входами внутренних каналов теплопроводящего элемента, дополнительно снабжено входящими в пневмогидравлическую систему двумя устройствами автоматического управления температурным режимом, двумя термоэлектрическими элементами, третьей и четвертой емкостями, частично заполненными жидкостью, девятью электромагнитными клапанами, при этом контроллер соединен с воздушным компрессором и со всеми электромагнитными клапанами, первое и второе устройства автоматического управления температурным режимом соединены с микропроцессорным устройством управления, а также с первым и вторым термоэлектрическими элементами соответственно, первая и вторая емкости конструктивно объединены, имеют общую герметичную перегородку, а также имеют тепловой контакт через первый термоэлектрический элемент с первым радиатором, третья и четвертая емкости конструктивно объединены, имеют общую герметичную перегородку, а также имеют тепловой контакт через второй термоэлектрический элемент со вторым радиатором, воздушный компрессор через воздушный фильтр и пятый, шестой и седьмой электромагнитные клапаны соединен трубопроводами соответственно со второй, третьей и четвертой емкостями, вторая, третья и четвертая емкости соединены трубопроводами соответственно через восьмой, девятый и десятый электромагнитные клапаны с окружающей средой, третья емкость через одиннадцатый электромагнитный клапан соединена трубопроводами с входами внутренних каналов теплопроводящего элемента, выходы внутренних каналов теплопроводящего элемента соединены через двенадцатый электромагнитный клапан с входом второй емкости, выходы внутренних каналов теплопроводящего элемента соединены через тринадцатый электромагнитный клапан с входом четвертой емкости, входы внутренних каналов расположены с одной стороны теплопроводящего элемента, а выходы внутренних каналов расположены с другой стороны теплопроводящего элемента.

Входы внутренних каналов и выходы внутренних каналов могут быть поочередно расположены на двух сторонах теплопроводящего элемент.

Пневмогидравлическая система может дополнительно содержать четырнадцатый электромагнитный клапан и насос, при этом вход насоса соединен трубопроводом с выходами внутренних каналов теплопроводящего элемента, а выход насоса через четырнадцатый электромагнитный клапан соединен трубопроводом с входами внутренних каналов теплопроводящего элемента, контроллер соединен с четырнадцатым электромагнитным клапаном и насосом.

Изобретение поясняется чертежами, на которых представлены:

на фиг. 1 - принципиальная схема заявляемого устройства для одновременного контроля множества амплификаций нуклеиновой кислоты;

на фиг. 2 - схема сопряжения одной из множества пробирок с реакционными смесями с коаксиальными волоконно-оптическими световодами заявляемого устройства;

на фиг. 3 - схема пневмогидравлической системы возможного исполнения заявляемого устройства.

Заявленное устройство для одновременного контроля множества амплификаций нуклеиновой кислоты (фиг. 1) состоит из термоциклера 1 с пробирками 2, оптической системы 3 с источником излучения 4 и приемником излучения 5, микропроцессорного устройства управления 6, персонального компьютера с программным обеспечением 7 и пневмогидравлической системы 8.

Микропроцессорное устройство управления 6 соединено с термоциклером 1, оптической системой 3, персональным компьютером 7 и пневмогидравлической системой 8. Источник излучения 4 и приемник излучения 5 содержат галогенную лампу или белый светодиод 9, двухлинзовые конденсоры 10 и 11, между линзами которых установлены интерференционные светофильтры возбуждения 12 и эмиссии 13, многоканальный фотоприемник 14 и световодный жгут 15. Угол α - угол между крайними лучами конического светового пучка оптической системы 3.

Термоциклер 1 содержит теплопроводящий элемент 16 с расположенными в его углублениях пробирками 2, который имеет сквозные внутренние каналы, устройство автоматического управления температурным режимом 17 и термокрышку 18. Между теплопроводящим элементом 16 и термокрышкой 18 установлена сменная теплоизолирующая перегородка 19.

Пневмогидравлическая система 8 содержит контроллер 20, устройства автоматического управления температурным режимом 21 и 22, соединенные с микропроцессорным устройством управления 6. Пневмогидравлическая система 8 соединена трубопроводами 23 с теплопроводящим элементом 16.

На фиг. 2 изображена в увеличенном виде одна из множества пробирок 2 с реакционной смесью 24. Пробирка 2 закрыта крышкой 25 и установлена в углубление теплопроводящего элемента 16. В термокрышке 18 имеются отверстия, в которые вставляются концы коаксиальных волоконно-оптических световодов с центральной 26 и периферийной 27 частями.

Центральные части световодов 26 используются для передачи света возбуждения от источника излучения 4, а периферийные части 27 - для передачи излучения из пробирок в приемник излучения 5.

Теплоизолирующая перегородка 19 имеет отверстия, оси которых совпадают с осями пробирок, а диаметры равны внешнему диаметру периферийной части световодов 27. Центральная передающая свет возбуждения часть световода 26 апертурно согласована с количеством реакционной смеси 24 в пробирке 2: перегородка 19 имеет вертикальный размер, при котором обеспечивается максимальный угол α между крайними лучами конического светового пучка на выходе из центральной части световода, падающего на поверхность реакционной смеси, имеющей диаметр d. Одновременно обеспечивается минимальное влияние тепловой крышки на температуру реакционной смеси.

На фиг. 3 представлена схема пневмогидравлической системы предлагаемого исполнения заявляемого устройства.

Термоэлектрические элементы 28 (элементы Пельтье) и радиатор 29, с помощью которых обеспечиваются температурные режимы теплопроводящего элемента 16, входят в устройство автоматического управления температурным режимом 17.

Пневмогидравлическая система 8 содержит контроллер 20, два устройства автоматического управления температурным режимом 21 и 22, трубопроводы 23, первый и второй термоэлектрические элементы 30-31 (элементы Пельтье), два радиатора 32-33, четыре емкости 34-37, частично заполненные жидкостью, воздушный компрессор 38, воздушный фильтр 39 и тринадцать электромагнитных клапанов 40-52.

Контроллер 20 соединен с воздушным компрессором 38 и всеми электромагнитными клапанами 40-52.

Первое устройство автоматического управления температурным режимом 21 соединено с первым термоэлектрическим элементом 30.

Второе устройство автоматического управления температурным режимом 22 соединено со вторым термоэлектрическим элементом 31.

Трубопроводы 23 и другие составные части пневмогидравлической системы имеют тепловую изоляцию.

Первая и вторая емкости 34 и 35 конструктивно объединены, имеют общую герметичную перегородку, а также имеют тепловой контакт через термоэлектрический элемент 30 с радиатором 32.

Третья и четвертая емкости 36 и 37 конструктивно объединены, имеют общую герметичную перегородку, а также имеют тепловой контакт через термоэлектрический элемент 31 с радиатором 33.

Воздушный компрессор 38 через воздушный фильтр 39, первый, второй, третий и четвертый электромагнитные клапаны 40-43 соединен трубопроводами соответственно с первой 34, второй 35, третьей 36 и четвертой 37 емкостями.

Первая 34, вторая 35, третья 36 и четвертая 37 емкости соединены трубопроводами 23 соответственно через пятый, шестой, седьмой и восьмой электромагнитные клапаны 44-47 с окружающей средой.

Первая емкость 34 через девятый и десятый электромагнитные клапаны 48 и 49 соединена трубопроводами 23 с входами внутренних каналов теплопроводящего элемента 16.

Третья емкость 36 через одиннадцатый электромагнитный клапан 50 соединена трубопроводами 23 с входами внутренних каналов теплопроводящего элемента 16.

Выходы внутренних каналов теплопроводящего элемента 16 соединены через двенадцатый электромагнитный клапан 51 со второй емкостью 35.

Выходы внутренних каналов теплопроводящего элемента 16 соединены через тринадцатый электромагнитный клапан 52 с четвертой емкостью 37.

Входы внутренних каналов расположены с одной стороны теплопроводящего элемента 16, а выходы внутренних каналов расположены с другой стороны теплопроводящего элемента 16.

Входы внутренних каналов и выходы внутренних каналов могут быть поочередно расположены на двух сторонах теплопроводящего элемента 16.

Пневмогидравлическая система 8 может дополнительно содержать еще один электромагнитный клапан 53 и насос 54, при этом вход насоса 54 соединен трубопроводом с выходами внутренних каналов теплопроводящего элемента, выход насоса 54 через электромагнитный клапан 53 соединен трубопроводом с входами внутренних каналов теплопроводящего элемента, контроллер 20 соединен с электромагнитным клапаном 53 и насосом 54.

Заявляемое устройство работает следующим образом.

При работе множество пробирок 2 (фиг. 1), помещается в углубления теплопроводящего элемента 16. Пример размещения одной из этих пробирок изображен на фиг. 2. Пробирка 2, которая содержит реакционную смесь 24 с набором химических реагентов и фрагментом нуклеиновой кислоты, герметично закрывается крышкой 25. Термокрышка 18 со сменной теплоизолирующей перегородкой 19, ограничивающей объем воздуха над пробиркой, обеспечивает дополнительный подогрев крышки 25 пробирки 2 и предотвращает конденсацию на ней капелек воды. С помощью микропроцессорного устройства управления 6 задается температурный цикл термоциклера 1, который имеет четыре температурных режима: нагрев, стабилизация температуры на верхнем уровне, охлаждение и стабилизация температуры на нижнем уровне.

В режимах стабилизации температуры оптическая система 3 обеспечивает регистрацию интенсивности флуоресценции всех проб.

Микропроцессорное устройство управления 6 передает циклические сигналы для синхронизации работы контроллера 20. Контроллер 20 (фиг. 3) управляет воздушным компрессором 38, а также открытием и закрытием клапанов 40-52.

В исходном состоянии все клапаны закрыты.

Устройство автоматического управления температурным режимом 21 с помощью термоэлектрических элементов 30 и радиатора 32 устанавливает и поддерживает температуру жидкости в емкостях 34 и 35 на верхнем уровне, например 95°C.

Устройство автоматического управления температурным режимом 22 с помощью термоэлектрических элементов 31 и радиатора 33 устанавливает и поддерживает температуру жидкости в емкостях 34 и 35 на нижнем уровне, например 60°C.

Работа в циклическом температурном режиме выполняется в 4 этапа:

1 этап - нагрев и стабилизация температуры на верхнем уровне,

2 этап - охлаждение и стабилизация температуры на нижнем уровне,

3 этап - нагрев и стабилизация температуры на верхнем уровне,

4 этап - охлаждение и стабилизация температуры на нижнем уровне. Работа каждого этапа выполняется на протяжении двух интервалов времени.

1 интервал - заполнение жидкостью каналов теплопроводящего элемента 16 или замена жидкости, которая заполняла каналы теплопроводящего элемента 16 после предыдущего температурного цикла.

2 интервал - протекание жидкости через внутренние каналы теплопроводящего элемента 16, а также подготовка для выполнения работы на следующем интервале времени: установка нормального атмосферного давления в одной емкости и повышенного давления воздуха в смежной емкости.

При подготовке выполнения работы устройства включается воздушный компрессор 38, который через воздушный фильтр 39 и открытый клапан 40 создает повышенное давление воздуха в первой емкости 34. Во второй емкости 35 с помощью открытого клапана 45 устанавливается нормальное атмосферное давление.

В начале 1 интервала 1 этапа в режиме нагрева и стабилизации температуры на верхнем уровне контроллер 20 открывает клапаны 49 и 52. Из первой емкости 34 через трубопровод 23 и клапан 49 жидкость под давлением с температурой высокого уровня протекает через каналы теплопроводящего элемента 16, вытесняя воздух или жидкость, которая заполняла каналы теплопроводящего элемента 16 после предыдущего температурного цикла, через клапан 52 в емкость 37.

В начале 2 интервала контроллер 20 открывает клапан 51 и закрывает клапан 52. Через внутренние каналы теплопроводящего элемента 16 протекает жидкость. С помощью трубопровода 23 через клапан 51 жидкость поступает на вход второй емкости 35.

На 2 интервале после закрытия клапана 52 выполняется подготовка к выполнению работы в течение 2 этапа времени: закрываются клапаны 43 и 46 и открываются клапаны 42 и 47. В емкости 36 с помощью воздушного компрессора 38 устанавливается повышенное давление воздуха, а в емкости 37 устанавливается нормальное атмосферное давление.

В начале 1 интервала 2 этапа времени в режиме охлаждения контроллер 20 выключает клапан 49 и включает клапан 50. Из третьей емкости 36 через трубопровод 23 под давлением жидкость с температурой низкого уровня через клапан 50 заполняет каналы теплопроводящего элемента 16, вытесняя жидкость с температурой высокого уровня через клапан 51 в емкость 35.

На 2 интервале контроллер 20 открывает клапан 52 и закрывает клапан 51. Из каналов теплопроводящего элемента 16 через открытый клапан 52 жидкость поступает на вход четвертой емкости 37, в которой поддерживается нормальное давление с помощью открытого клапана 47.

На 2 интервале после закрытия клапана 51 выполняется подготовка к выполнению работы в течение 3 этапа времени: при закрытых клапанах 44 и 45, открываются клапаны 40 и 41, давление в емкостях 34 и 35 выравнивается. Затем закрывается клапан 40, и открывается клапан 44, в емкости 35 с помощью воздушного компрессора 38 устанавливается повышенное давление воздуха, а в емкости 34 устанавливается нормальное атмосферное давление.

При работе на 3 и 4 этапах времени изменяется направление движения жидкости через каналы теплопроводящего элемента 16.

В начале 1 интервала 3 этапа времени в режиме нагрева и стабилизации температуры на верхнем уровне контроллер 20 открывает клапан 51. Из второй емкости 35 через трубопровод 23 под давлением жидкость с температурой высокого уровня через клапан 51 заполняет каналы теплопроводящего элемента 16, вытесняя жидкость с температурой низкого уровня через клапан 50 в емкость 36.

На 2 интервале контроллер 20 открывает клапан 49 и закрывает клапан 50. Из каналов теплопроводящего элемента 16 через открытый клапан 50 жидкость поступает на вход первой емкости 34, в которой поддерживается нормальное давление с помощью открытого клапана 44.

На 2 интервале после закрытия клапана 50 выполняется подготовка к выполнению работы в течение 4 этапа времени: при закрытых клапанах 46 и 47, открываются клапаны 42 и 43, давление в емкостях 36 и 37 выравнивается. Затем закрывается клапан 42, и открывается клапан 46, в емкости 37 с помощью воздушного компрессора 38 устанавливается повышенное давление воздуха, а в емкости 36 устанавливается нормальное атмосферное давление.

В начале 1 интервала 4 этапа времени в режиме охлаждения контроллер 20 выключает клапан 51 и включает клапан 52. Из четвертой емкости 37 через трубопровод 23 под давлением жидкость с температурой низкого уровня через клапан 52 заполняет каналы теплопроводящего элемента 16, вытесняя жидкость с температурой высокого уровня через клапан 49 в емкость 34.

На 2 интервале контроллер 20 открывает клапан 50 и закрывает клапан 49. С выхода каналов теплопроводящего элемента 16 через открытый клапан 50 жидкость поступает на вход третьей емкости 36, в которой поддерживается нормальное давление с помощью открытого клапана 46.

На 2 интервале после закрытия клапана 49 выполняется подготовка к выполнению работы в течение следующего 1 этапа времени: при закрытых клапанах 44 и 45, открываются клапаны 40 и 41, давление в емкостях 34 и 35 выравнивается. Затем закрывается клапан 41, и открывается клапан 45, в емкости 34 с помощью воздушного компрессора 38 устанавливается повышенное давление воздуха, а в емкости 35 устанавливается нормальное атмосферное давление.

В процессе анализа процессы 4 этапов времени многократно повторяются.

Некоторая неравномерность температуры пробирок 2 может наблюдаться, если входы внутренних каналов расположены с одной стороны, а выходы внутренних каналов расположены с другой стороны теплопроводящего элемента 16, поскольку температура жидкости на входах внутренних каналов может за счет теплообмена отличаться от температуры жидкости на выходах внутренних каналов теплопроводящего элемента 16.

Если входы внутренних каналов и выходы внутренних каналов расположены поочередно на двух сторонах теплопроводящего элемента 16, то происходит дополнительное выравнивание температуры всех пробирок 2.

Периодически или после завершения анализа уровни жидкости во всех емкостях выравниваются. Для этого закрываются клапаны 40-43, и открываются клапаны 44-47 и 49-52.

Протекающая через каналы теплопроводящего элемента 16 жидкость значительно повышает скорость изменения температуры в режимах нагрева и охлаждения и выравнивает температуру пробирок режиме стабилизации температуры, при этом сокращается общее время анализа и уменьшается разброс результатов анализа в циклическом режиме.

Для работы в режиме плавления пневмогидравлическая система 8 обеспечивает удаление жидкости из каналов теплопроводящего элемента 16. Предварительно кратковременно открываются клапаны 40, 45, 48 и 51. Режим плавления выполняется с помощью ступенчатого изменения температуры термоциклера 1.

Второй вариант режима плавления пневмогидравлическая система 8 обеспечивается также без удаления жидкости из каналов теплопроводящего элемента 16. Для этого включается клапан 53 и насос 54 при закрытых других клапанах. Режим плавления выполняется также с помощью ступенчатого изменения температуры термоциклера 1, при этом движение жидкости в каналах каналов теплопроводящего элемента 16 обеспечивает выравнивание температуры всех пробирок 2, содержащих реакционную смесь.

Таким образом, достигается уменьшение разброса результатов анализа в режиме плавления.

Предложенная конструкция устройства позволяет увеличить скорость изменения температуры в циклическом режиме и обеспечивает выравнивание температуры всех пробирок, содержащих реакционную смесь, и тем самым повышает быстродействие и производительность этого устройства путем сокращения времени анализа, а также уменьшает разброс результатов анализа в циклическом режиме и в режиме плавления.

Источники информации

1. Патент США №8797526 В2, кл. G01N 1/10, 05.08.2014 г.

2. The LightCycler® 480 Real-Time PCR System (http://www.roche-applied-science.com).

3. Патент США №7632464 B2, кл. США 422/99, 422/102, 422/130, 15.12.2009 г.

4. Патент на полезную модель РФ №133835, МПК7: C12M 1/38, опубл. 27.10.2013 г.

5. Патент на изобретение РФ №2304277, МПК G01N 21/63, опубл. 10.08.2007 г.

6. Патент на изобретение РФ №2418289, МПК G01N21/64, опубл. 10.05.2011 г.

7. Заявка на изобретение РФ, регистрационный номер поступления заявки №2015149676 от 19.11.2015 г., регистрационный номер НИОКТР 115012130086, регистрационный номер РИД ААААГ16 616032310018-5 от 23.03.2016 г.

Похожие патенты RU2666209C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ 2015
  • Белов Дмитрий Анатольевич
  • Белов Юрий Васильевич
  • Коновалов Сергей Владимирович
  • Алексеев Яков Игоревич
RU2640186C2
УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ 2016
  • Белов Дмитрий Анатольевич
  • Белов Юрий Васильевич
RU2691763C2
УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ 2009
  • Алексеев Яков Игоревич
  • Белов Юрий Васильевич
  • Богданов Владимир Михайлович
  • Варламов Дмитрий Александрович
  • Коновалов Сергей Владимирович
  • Курочкин Владимир Ефимович
  • Петров Александр Иванович
  • Скоблилов Евгений Юрьевич
  • Соколов Валерий Николаевич
  • Сочивко Дмитрий Гарриевич
  • Чернышев Андрей Владимирович
RU2418289C1
УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ 2005
  • Алексеев Яков Игоревич
  • Варламов Дмитрий Александрович
  • Коновалов Сергей Владимирович
  • Курочкин Владимир Ефимович
  • Маракушин Николай Федорович
  • Петров Александр Иванович
  • Петряков Александр Олегович
  • Скоблилов Евгений Юрьевич
  • Соколов Валерий Николаевич
  • Фесенко Владимир Анатольевич
  • Чернышев Андрей Владимирович
RU2304277C2
ТЕРМОЦИКЛЕР 2011
  • Кобб Бен
RU2577282C2
Термоэлектрический генератор бытовой 2020
  • Пономарев Сергей Витальевич
RU2767007C2
ОБОГРЕВАТЕЛЬ СО ВСТРОЕННЫМ ТЕРМОЭЛЕКТРИЧЕСКИМ ГЕНЕРАТОРОМ 2022
  • Баукин Владимир Евгеньевич
  • Винокуров Александр Викторович
  • Савельев Максим Анатольевич
RU2782078C1
ДИРИЖАБЛЬ 2021
  • Андреев Сергей Андреевич
  • Белов Дмитрий Владимирович
RU2751924C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ ТОПЛИВА И МОТОРНОГО МАСЛА В ДВИГАТЕЛЯХ ВНУТРЕННЕГО СГОРАНИЯ 2009
  • Калинин Вячеслав Фёдорович
  • Щегольков Александр Викторович
RU2398126C1
СПОСОБ ТЕРМОСТАБИЛИЗАЦИИ ЭЛЕКТРОННОЙ АППАРАТУРЫ 2016
  • Дроздов Игорь Геннадьевич
  • Иванов Александр Сергеевич
  • Калинин Юрий Егорович
  • Шматов Дмитрий Павлович
  • Чуйко Артем Георгиевич
  • Кружаев Константин Владимирович
  • Коновалов Дмитрий Альбертович
  • Кожухов Николай Николаевич
  • Дахин Сергей Викторович
RU2630948C1

Иллюстрации к изобретению RU 2 666 209 C2

Реферат патента 2018 года УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ

Изобретение относится к приборам для качественного и количественного анализа нуклеиновых кислот (ДНК и РНК). В устройстве использован метод полимеразной цепной реакции (ПЦР) в реальном времени. Устройство, содержащее термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, который имеет сквозные внутренние каналы, термокрышку, устройство автоматического управления температурным режимом, оптическую систему, микропроцессорное устройство управления, персональный компьютер и пневмогидравлическую систему, содержащую контроллер, трубопроводы, емкости, частично заполненные жидкостью, радиаторы, воздушный компрессор, воздушный фильтр и электромагнитные клапаны, дополнительно снабжено двумя устройствами автоматического управления температурным режимом и двумя термоэлектрическими элементами. С помощью термоэлектрических элементов поддерживается температура жидкости в емкостях на верхнем и на нижнем уровнях. С помощью компрессора и клапанов обеспечивается циклическое движение жидкости через сквозные внутренние каналы теплопроводящего элемента. Изобретение обеспечивает увеличение скорости изменения температуры в циклическом режиме и обеспечение выравнивания температуры всех пробирок, содержащих реакционную смесь, повышение быстродействия и производительности устройства, а также уменьшение разброса результатов анализа в циклическом режиме и в режиме плавления. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 666 209 C2

1. Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты, содержащее термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, который имеет сквозные внутренние каналы, термокрышку, устройство автоматического управления температурным режимом, оптическую систему, включающую источник излучения и приемник излучения, коаксиальные волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок, центральная передающая свет возбуждения часть световода апертурно согласована с количеством реакционной смеси в пробирках, установленных в углублениях теплопроводящего элемента, объем пробирок соответствует максимальному объему реакционной смеси, между пробирками и термокрышкой установлена сменная теплоизолирующая перегородка с отверстиями, микропроцессорное устройство управления, персональный компьютер и пневмогидравлическую систему, содержащую контроллер, трубопроводы, две емкости, частично заполненные жидкостью, два радиатора, воздушный компрессор, воздушный фильтр, четыре электромагнитных клапана, в которой контроллер соединен с микропроцессорным устройством управления, воздушным компрессором и четырьмя электромагнитными клапанами, воздушный компрессор соединен трубопроводами через воздушный фильтр и первый электромагнитный клапан с первой емкостью, частично заполненной жидкостью, первая емкость соединена трубопроводом через второй электромагнитный клапан с окружающей средой, первая емкость через третий и четвертый электромагнитные клапаны соединена трубопроводами с входами внутренних каналов теплопроводящего элемента, отличающееся тем, что устройство снабжено входящими в пневмогидравлическую систему двумя устройствами автоматического управления температурным режимом, двумя термоэлектрическими элементами, третьей и четвертой емкостями, частично заполненными жидкостью, и девятью электромагнитными клапанами, при этом контроллер соединен с воздушным компрессором и со всеми электромагнитными клапанами, первое и второе устройства автоматического управления температурным режимом соединены с микропроцессорным устройством управления, а также с первым и вторым термоэлектрическими элементами соответственно, первая и вторая емкости конструктивно объединены, имеют общую герметичную перегородку, а также имеют тепловой контакт через первый термоэлектрический элемент с первым радиатором, третья и четвертая емкости конструктивно объединены, имеют общую герметичную перегородку, а также имеют

тепловой контакт через второй термоэлектрический элемент со вторым радиатором, воздушный компрессор через воздушный фильтр и пятый, шестой и седьмой электромагнитные клапаны соединен трубопроводами соответственно со второй, третьей и четвертой емкостями, вторая, третья и четвертая емкости соединены трубопроводами соответственно через восьмой, девятый и десятый электромагнитные клапаны с окружающей средой, третья емкость через одиннадцатый электромагнитный клапан соединена трубопроводами с входами внутренних каналов теплопроводящего элемента, выходы внутренних каналов теплопроводящего элемента соединены через двенадцатый электромагнитный клапан с входом второй емкости, выходы внутренних каналов теплопроводящего элемента соединены через тринадцатый электромагнитный клапан с входом четвертой емкости, входы внутренних каналов расположены с одной стороны теплопроводящего элемента, а выходы внутренних каналов расположены с другой стороны теплопроводящего элемента.

2. Устройство по п. 1, отличающееся тем, что входы внутренних каналов и выходы внутренних каналов поочередно расположены на двух сторонах теплопроводящего элемента.

3. Устройство по п. 2, отличающееся тем, что пневмогидравлическая система содержит четырнадцатый электромагнитный клапан и насос, при этом вход насоса соединен трубопроводом с выходами внутренних каналов теплопроводящего элемента, а выход насоса через четырнадцатый электромагнитный клапан соединен трубопроводом с входами внутренних каналов теплопроводящего элемента, контроллер соединен с четырнадцатым электромагнитным клапаном и насосом.

Документы, цитированные в отчете о поиске Патент 2018 года RU2666209C2

RU 2015149676 A, 10.08.2016
Глубинный пробоотборник 1959
  • Лещев Д.А.
  • Молчанов В.И.
SU133835A1
УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО КОНТРОЛЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ МНОЖЕСТВА АМПЛИФИКАЦИЙ НУКЛЕИНОВОЙ КИСЛОТЫ 2009
  • Алексеев Яков Игоревич
  • Белов Юрий Васильевич
  • Богданов Владимир Михайлович
  • Варламов Дмитрий Александрович
  • Коновалов Сергей Владимирович
  • Курочкин Владимир Ефимович
  • Петров Александр Иванович
  • Скоблилов Евгений Юрьевич
  • Соколов Валерий Николаевич
  • Сочивко Дмитрий Гарриевич
  • Чернышев Андрей Владимирович
RU2418289C1
US 8797526 B2, 05.08.2014
Устройство для ремонта и дефекто-СКОпиРОВАНия ТягОВОгО ХОМуТА АВТОСцЕпКипОдВижНОгО COCTABA жЕлЕзНыХ дОРОг 1978
  • Бредун Виталий Алексеевич
  • Мунтян Александр Андреевич
  • Балаканов Владимир Александрович
SU812621A1

RU 2 666 209 C2

Авторы

Белов Дмитрий Анатольевич

Белов Юрий Васильевич

Даты

2018-09-06Публикация

2016-09-22Подача