Легкогазовая установка Российский патент 2018 года по МПК F41F1/00 

Описание патента на изобретение RU2668481C2

Изобретение относится к устройствам для метания снарядов. Преимущественная область применения - экспериментальные исследования высокоскоростных ударных явлений.

Конструктивные особенности и принцип работы различных легкогазовых установок (ЛГУ) описаны в книге [1]. Наибольшее распространение получили многоступенчатые газодинамические метательные устройства, типичным представителем которых является двухступенчатая поршневая установка. В таких установках метание снаряда осуществляется легким газом (водородом, гелием), сжатым при помощи поршня, ускоренного в камере сжатия продуктами сгорания порохового заряда. Характерной особенностью работы ЛГУ являются значительные динамические нагрузки. Стремление к повышению технических показателей сопряжено с предельными, а порой недопустимыми, механическими нагрузками, действующими на элементы установки, вплоть до выведения ЛГУ из строя [1, стр. 25]. Наиболее нагруженными при этом являются конический переходник камеры сжатия (форкамера) и сопряженные с ним элементы. Зачастую живучесть форкамеры на предельных режимах работы ЛГУ составляет несколько или даже один выстрел [2, 3].

Известна трехступенчатая легкогазовая установка [4], позволяющая снизить механические и температурные нагрузки на элементы конструкции, повысить надежность и безопасность. Достигается это тем, что в качестве источника энергии в первой ступени установки вместо пороха используется сжатый газ, например воздух, водород или гелий. Для принудительного прорыва диафрагмы первой ступени используется специальное устройство с подвижной иглой, вмонтированное в дно камеры. Недостатком устройства является значительное усложнение первой ступени по сравнению с зарядными камерами ЛГУ, использующими в качестве источника энергии расширяющиеся пороховые газы.

Известна двухступенчатая легкогазовая установка [5], где повышение живучести форкамеры достигается за счет замены монолитного поршня на составной деформируемый поршень, выполненный из двух полимерных, например полиэтиленовых, обтюраторов, пространство между которыми заполнено гелеобразным или жидким веществом, например, пушечным салом. Недостатками являются сложное снаряжение составного поршня и трудоемкость работ по приведению установки в готовность к очередному эксперименту.

Известна легкогазовая пушка [6], в камере сжатия которой установлено два поршня - тяжелый основной и, на некотором расстоянии от него, легкий дополнительный. Уменьшение величины ударной нагрузки на конический переходник камеры сжатия достигается за счет: тяжелый поршень тормозится сжатым в полости между ним и дополнительном поршнем газом и не имеет непосредственного контакта с коническим переходником; легкий дополнительный поршень является деформируемым и выполнен с открытой полостью в сторону баллистического ствола, что облегчает его внедрение в конический переходник. Недостатком легкогазовой пушки можно отметить то, что с добавлением дополнительных поршня и полости будет сложнее прогнозировать и реализовывать требуемые параметры.

Наиболее близким аналогом к заявляемой ЛГУ, выбранным в качестве прототипа, является двухступенчатая поршневая установка [1, стр. 21-27]. Она содержит зарядную камеру с пороховым зарядом, камеру сжатия, заканчивающуюся коническим переходником и заполненную легким газом, баллистический ствол, поршень, отделяющий зарядную камеру от камеры сжатия, и мембрану, отделяющую камеру сжатия от баллистического ствола. Выстрел из двухступенчатой поршневой установки осуществляется следующим образом. После инициирования порохового заряда продукты сгорания разгоняют поршень, который сжимает легкий газ. При достижении расчетного давления в камере сжатия мембрана разрушается и легкий газ, устремляясь в баллистический ствол, разгоняет метаемый снаряд. Недостатком двухступенчатой легкогазовой установки, рассматриваемой в качестве прототипа, является высокие величины ударных механических нагрузок, действующих во время внедрения поршня в конический переходник камеры сжатия, с передачей их на другие элементы ЛГУ.

Решаемой технической задачей является снижение пиковых механических нагрузок, действующих на наиболее нагруженные элементы конструкции (форкамера, поджимная гайка (с трапецеидальной/упорной резьбой), баллистический ствол).

Технический результат: повышение надежности ЛГУ.

Технический результат достигается тем, что в предлагаемой ЛГУ, содержащей: баллистический ствол; зарядную камеру с пороховым зарядом; камеру сжатия и форкамеру, заполненные легким газом; деформируемый поршень, отделяющий зарядную камеру от камеры сжатия; мембрану, отделяющую форкамеру от баллистического ствола, форкамера выполнена в виде отдельной детали, установлена в ЛГУ на место конического переходника камеры сжатия, закреплена поджимной гайкой через демпфирующие прокладки и не имеет жесткого соединения с другими элементами конструкции. При этом жесткое соединение - это соединение, не допускающее взаимного сдвига и/или поворота соединяемых элементов [7].

На фиг. 1 показан пример выполнения заявляемой ЛГУ, где:

1 - пороховой заряд;

2 - зарядная камера;

3 - деформируемый поршень;

4 - камера сжатия;

5 - форкамера (с внешним конусом для осевой центровки);

6 - конический переходник;

7 - мембрана;

8 - баллистический ствол;

9 - метаемый снаряд;

10 - поджимная гайка (с трапецеидальной/упорной резьбой);

11 - демпфирующие прокладки (из ударо-вибростойкого материала);

12 - упорное кольцо.

Предлагаемая ЛГУ работает следующим образом. При срабатывании порохового заряда 1, в зарядной камере 2 резко повышается давление пороховых газов, под действием которых деформируемый поршень 3 перемещается, сжимая легкий газ в камере сжатия 4 и коническом переходнике 6 форкамеры 5. По достижении расчетного давления мембрана 7 разрушается и легкий газ, устремляясь в баллистический ствол 8, начинает разгонять метаемый снаряд 9. Деформируемый поршень 3, достигнув конического переходника 6, внедряется в него, продолжая сжимать легкий газ. Открытая полость деформируемого поршня схлопывается, вытесняя находящийся в ней легкий газ и осуществляя дополнительный подгон метаемого снаряда 9. Форкамера 5 имеет возможность некоторого осевого перемещения, так как установлена в ЛГУ и закреплена поджимной гайкой 10 через демпфирующие прокладки 11. Поэтому при внедрении в конический переходник 6 деформируемого поршня 3, его кинетическая энергия гасится за больший промежуток времени. В результате применения деформируемого поршня и демпфирующих прокладок происходит снижение амплитуд пиковых давлений и более равномерное распределение механических нагрузок на конструктивные элементы ЛГУ.

Сопоставительный анализ предлагаемого решения и прототипа показывает, что заявляемая ЛГУ отличается совокупностью новых конструктивных признаков: форкамера выполнена в виде отдельной детали; конструкция форкамеры предусматривает элементы для ее осевой центровки и установки демпфирующих прокладок; имеются демпфирующие прокладки; демпфирующие прокладки выполнены из ударо-вибростойкого материала (например, полиуретана), крепление баллистического ствола, мембраны и форкамеры осуществляется посредством одной поджимной гайки.

Применение полиуретана в качестве материала для изготовления демпфирующих прокладок обусловлено его уникальными свойствами. Полиуретан сочетает в себе, казалось бы, противоположные качества. Он и прочный и эластичный. Кроме того, он имеет высокое сопротивление многократным деформациям, высокую вибростойкость, масло- и бензостойкость, стойкость ко многим растворителям, высокую износостойкость и сопротивление истиранию. Такие детали как втулки, манжеты, кольца, прокладки и другие уплотнения целесообразно изготавливать именно из полиуретана, а не из резины. На эти детали приходится основная ударная, вибрационная нагрузка. А полиуретан как раз тот материал, который наиболее стоек к подобным воздействиям.

Технико-экономический эффект предлагаемого устройства основан на повышении надежности путем улучшения таких ее свойств, как безотказность и ремонтопригодность.

Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течении некоторого времени или наработки [8]. Снижение пиковых механических нагрузок, действующих на наиболее нагруженные элементы конструкции, повышает вероятность безотказной работы предлагаемой ЛГУ. Сокращение простоев ЛГУ, вызванных отказами при проведении экспериментов, - прямой путь к повышению производительности труда, достижению экономического эффекта.

Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта [8]. Краткий анализ характеристик ремонтопригодности показывает преимущества заявляемой ЛГУ в сравнении с прототипом:

- Простота, легкость и удобство разборки и сборки руками или с минимальным набором инструментов. В предлагаемой установке эти операции выполняются отворачиванием и заворачиванием поджимной гайки с использованием одного ключа. Тем более, что эти операции являются штатными при подготовке и проведении каждого эксперимента (замена мембраны, извлечение деформированного поршня, чистка баллистического ствола и камеры сжатия, установка метаемого снаряда).

- Заложенное при конструировании деление изделия, или его ремонтных частей, на типовые элементы замены (ТЭЗ). В предлагаемой установке наиболее нагруженный и часто выходящий из строя элемент представляет собой отдельную легко заменяемую деталь - форкамеру.

- Физическое наличие нового ТЭЗ взамен отказавшего или износившегося. Форкамера представляет собой достаточно простую, неметаллоемкую и недорогую деталь (по сравнению с камерой сжатия, заканчивающейся коническим переходником), для изготовления которой потребуются лишь токарные работы. Поэтому для бесперебойной эксплуатации установки несложно организовать требуемый запас ТЭЗ.

- Возможность определения того, что именно необходимо заменить, с точностью до ТЭЗ. После каждого эксперимента имеется возможность визуального осмотра и инструментального контроля наиболее нагруженных элементов.

В процессе практической отработки предложенного технического решения авторами подтверждена работоспособность, отмечено снижение интенсивности отказов и сокращение среднего времени восстановления ЛГУ. Хорошие результаты получены при изготовлении форкамеры из стали 38ХНЗМФА.

Библиографический список

1. Баллистические установки и их применение в экспериментальных исследованиях / Златин Н.А. [и др.]. - М: Наука, 1974. - 334 с.

2. Теоретические и экспериментальные исследования гиперзвуковых течений при обтекании тел и в следах: сб. статей / под ред. Г.Г. Чёрного, С.Ю. Чернявского. - М.: Изд-во Моск. гос. ун-та, 1979. - 110 с.

3. Легкогазовая баллистическая установка / Чернявский Г.Г. [и др.]. - М: Тр. ин-та механики МГУ, 1975. №39. С. 28-37.

4. Пат. 2490580 Российская Федерация, МПК F41F 1/00. Трехступенчатая легкогазовая установка / Биматов В.И. [и др.]; заявитель и патентообладатель Национальный исслед. Томский политехи, ун-т. - заявл. 03.05.12; опубл. 20.08.13.

5. Пат. 2251063 Российская Федерация, МПК F41F 1/00. Двухступенчатая легкогазовая установка / Христенко Ю.Ф.; заявитель и патентообладатель Науч.-исслед. ин-т прикладной математики и механики при Томском гос. ун-те. - №2001115626/02; заявл. 06.06.01; опубл. 27.04.05, Бюл. №12.

6. Пат. 2135928 Российская Федерация, МПК F41F 1/00. Легкогазовая пушка / Дерюгин Ю.Н. [и др.]; заявитель и патентообладатель Российский фед. ядерный центр - Всероссийский науч.-исслед. ин-т экспериментальной физики. - №98111575/02; заявл. 17.06.98; опубл. 27.08.99.

7. Словари и энциклопедии на Академике [Электронный ресурс]: универсальный русско-английский словарь. - Режим доступа: http://universal_ru_en.academic.ru, свободный. - Загл. с экрана.

8. ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения. - Введ. 1990-07-01. - М: Изд-во стандартов, 1990. - 24 с.

Похожие патенты RU2668481C2

название год авторы номер документа
ЛЕГКОГАЗОВАЯ УСТАНОВКА (ВАРИАНТЫ) 2022
  • Гончаров Павел Сергеевич
  • Житный Михаил Владимирович
  • Мартынов Виктор Васильевич
  • Шуневич Николай Александрович
  • Девяткина Татьяна Юлиановна
RU2797429C1
ЛЕГКОГАЗОВАЯ ПУШКА 1998
  • Дерюгин Ю.Н.
  • Куликов С.В.
  • Сальников А.В.
  • Шляпников Г.П.
RU2135928C1
ЛЕГКОГАЗОВАЯ ПУШКА 1999
  • Бобровников А.Г.
  • Дерюгин Ю.Н.
  • Лапичев Н.В.
  • Шляпников Г.П.
RU2168138C2
ТРЕХСТУПЕНЧАТАЯ ЛЕГКОГАЗОВАЯ УСТАНОВКА 2012
  • Биматов Владимир Исмагилович
  • Христенко Юрий Федорович
  • Жалнин Евгений Викторович
  • Жаровцев Владимир Васильевич
  • Погорелов Евгений Иванович
RU2490580C1
ДВУХСТУПЕНЧАТАЯ ЛЕГКОГАЗОВАЯ УСТАНОВКА 2001
  • Христенко Ю.Ф.
RU2251063C2
НАГРУЖАЮЩАЯ УСТАНОВКА СТВОЛЬНОГО ТИПА 2018
  • Китин Николай Юрьевич
  • Лопаткин Александр Александрович
  • Занегин Игорь Владимирович
RU2676847C1
УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ПОРШНЯ ИЗ ЛЕГКОГАЗОВОЙ ПУШКИ 1997
  • Куликов С.В.
  • Шляпников Г.П.
  • Янбаев Г.М.
RU2141090C1
МИНОМЕТНЫЙ БЕСШУМНЫЙ ВЫСТРЕЛ 2011
  • Авенян Владимир Амбарцумович
  • Алексеев Валерий Владимирович
  • Бирюков Александр Николаевич
  • Власов Владимир Порфирьевич
  • Волкова Тамара Борисовна
  • Гульстен Алексей Витальевич
  • Закаменных Георгий Иванович
  • Иванюшкин Александр Иосифович
  • Клочков Александр Алексеевич
  • Константинова Юлия Владимировна
  • Мартынов Владимир Алексеевич
  • Новиков Александр Алексеевич
  • Пономарёв Александр Васильевич
  • Попов Дмитрий Леонидович
  • Смышляев Вячеслав Михайлович
  • Третьяков Александр Фёдорович
  • Харин Геннадий Васильевич
RU2494337C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРИБАЛЛИСТИЧЕСКИХ ПАРАМЕТРОВ РАЗГОНА МЕТАЕМЫХ ОБЪЕКТОВ В СТВОЛЬНЫХ МЕТАТЕЛЬНЫХ УСТАНОВКАХ 2020
  • Барабин Виктор Витальевич
  • Занегин Игорь Владимирович
  • Кальманов Алексей Васильевич
  • Окинчиц Андрей Александрович
RU2731850C1
БАЛЛИСТИЧЕСКАЯ УСТАНОВКА 2012
  • Шестаков Александр Николаевич
  • Игнатов Олег Леонидович
  • Снимщиков Иван Яковлевич
  • Половников Евгений Александрович
  • Драгунов Юрий Алексеевич
  • Сабаев Михаил Николаевич
RU2526574C2

Иллюстрации к изобретению RU 2 668 481 C2

Реферат патента 2018 года Легкогазовая установка

Изобретение относится к устройствам для метания снарядов, применяемым преимущественно при экспериментальных исследованиях высокоскоростных ударных явлений. Легкогазовая установка содержит зарядную камеру с пороховым зарядом, камеру сжатия с коническим переходником, заполненную легким газом, баллистический ствол, поршень, отделяющий зарядную камеру от камеры сжатия, мембрану, отделяющую камеру сжатия от баллистического ствола. Поршень выполнен демпфируемым. Конический переходник камеры сжатия выполнен в виде форкамеры, установленной в конце камеры сжатия через демпфирующие прокладки и не имеющей жесткого соединения с другими элементами конструкции. Демпфирующие прокладки выполнены из ударовибростойкого материала, например полиуретана. Техническим результатом изобретения является снижение механических нагрузок, действующих на элементы легкогазовой установки, повышение надежности. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 668 481 C2

1. Легкогазовая установка, содержащая зарядную камеру с пороховым зарядом, камеру сжатия с коническим переходником, заполненную легким газом, баллистический ствол, поршень, отделяющий зарядную камеру от камеры сжатия, и мембрану, отделяющую камеру сжатия от баллистического ствола, отличающаяся тем, что поршень выполнен демпфируемым, а конический переходник камеры сжатия выполнен в виде форкамеры, установленной в конце камеры сжатия через демпфирующие прокладки и не имеющей жесткого соединения с другими элементами конструкции.

2. Легкогазовая установка по п. 1, отличающаяся тем, что демпфирующие прокладки выполнены из ударовибростойкого материала, например полиуретана.

Документы, цитированные в отчете о поиске Патент 2018 года RU2668481C2

Под
ред
Н.А
Златина и др
"Многоступенчатые газодинамические метательные устройства"
Баллистические установки и их применение в экспериментальных исследованиях
- М.: Наука, 1974, с
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
ТРЕХСТУПЕНЧАТАЯ ЛЕГКОГАЗОВАЯ УСТАНОВКА 2012
  • Биматов Владимир Исмагилович
  • Христенко Юрий Федорович
  • Жалнин Евгений Викторович
  • Жаровцев Владимир Васильевич
  • Погорелов Евгений Иванович
RU2490580C1
ДВУХСТУПЕНЧАТАЯ ЛЕГКОГАЗОВАЯ УСТАНОВКА 2001
  • Христенко Ю.Ф.
RU2251063C2
RU 20168138 C2, 27.05.2001
CN 103322857 A, 25.09.2013
Токарный резец 1924
  • Г. Клопшток
SU2016A1

RU 2 668 481 C2

Авторы

Гончаров Павел Сергеевич

Светлорусов Максим Александрович

Мартынов Виктор Васильевич

Синельников Эдуард Геннадьевич

Тимофеев Николай Михайлович

Бабин Александр Михайлович

Даты

2018-10-01Публикация

2016-11-14Подача