Изобретение относится к авиадвигателестроению.
Основным трендом для ТРДД является повышение их экономичности. Достигается это за счет увеличения эффективного и полетного к.п.д. ТРДД. Эффективный к.п.д. ТРДД можно повысить двумя способами: за счет изменения вида термодинамического цикла ТРДД, и за счет изменения его параметров. Полетный к.п.д. ТРДД можно повысить за счет повышения степени двухконтурности ТРДД, величина которой, в конечном счете, определяется тем же термодинамическим циклом ТРДД (чем больше работа цикла, тем больше степень двухконтурности).
Целью изобретения является повышение экономичности ТРДД.
Известны двухконтурные турбореактивные двигатели с раздельными контурами со степенями двухконтурности более десяти (например, Trent 1000, НК-93 и др.), состоящие из входного устройства, вентилятора; внутреннего контура, внутри которого расположены: компрессор (компрессоры), камера сгорания, турбины, сопло; внешнего контура, состоящего из кольцевого канала и сопла (Теория и расчет воздушно-реактивных двигателей / Под ред. С.М. Шляхтенко. - М.: Машиностроение, 1987, с. 17, рис. 1.3).
Известны турбовинтовые газотурбинные двигатели с регенерацией тепла (там же, с. 354, рис. 11.3).
Известны турбовальные газотурбинные двигатели, у которых за свободной турбиной устанавливается не сопло, а диффузорный выходной патрубок (Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Ч. 2. - М.: Машиностроение, 1978, с. 268, рис. 19.2).
Поставленная цель достигается тем, что в ТРДД с раздельными контурами со степенью двухконтурности более десяти снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура (вместо сопла) и состоящим из расширяющихся каналов, расположенных внутри внешнего контура, сообщенных с атмосферой.
Сущность изобретения заключается в том, что выходной патрубок позволяет: а) увеличить степень понижения давления в турбине привода вентилятора; б) изменить вид термодинамического цикла ТРДД; в) осуществить регенерацию теплоты во внешнем контуре.
На фиг. 1 показан ТРДД;
на фиг. 2 показан термодинамический цикл ТРДД (внутренний контур);
на фиг. 3 показан термодинамический цикл ТРДД (внешний контур).
Двухконтурный ТРД (фиг. 1) состоит из входного устройства 1, вентилятора 2, внутреннего и внешнего контуров. Во внутреннем контуре расположены: компрессоры 3, камера сгорания 4, турбины 5, выходной патрубок 6, состоящий из диффузорных каналов, которые расположены внутри внешнего контура 7 и сообщены с атмосферой. Внешний контур 7 представляет собой кольцевой канал, заканчивающийся соплом 8.
Работа двигателя не отличается от работы ТРДД с раздельными контурами, за исключением работы турбины 5 и выходного устройства (патрубок 6). В турбине 5 срабатывается перепад давлений, превышающий располагаемый перепад давлений (отношение давления газа перед турбиной к атмосферному). В результате скорость газа за турбиной увеличивается, а статическое давление становится меньше атмосферного. В диффузорных каналах 6 газ тормозится до скорости, при которой его статическое давление становится равным атмосферному, после чего газ истекает в атмосферу.
Каналы 6 обдуваются воздухом внешнего контура, температура которого меньше температуры выхлопных газов. Между горячим газом и воздухом устанавливается тепловой поток, в результате которого температура выхлопных газов понижается, а температура воздуха повышается. Понижение температуры выхлопных газов снижает затраты энергии на их сжатие при торможении в каналах 6, а так же уменьшает потери с выхлопом. Повышение температуры воздуха увеличивает скорость истечения воздуха из сопла 8, которая, как известно, пропорциональна корню квадратному из указанной температуры.
На фиг. 2 показан термодинамический цикл ТРДД (внутренний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-к - сжатие воздуха в компрессорах; к-г - процесс в камере сгорания; г-тк - расширение газа в турбинах привода компрессоров; тк-т - расширение газа в турбине привода вентилятора; т-с - сжатие газа в каналах выходного патрубка. Сжатие газа происходит с отводом тепла во внешний контур ТРДД (температура газа приближается к температуре воздуха наружного контура Тв* - точка с). Работа цикла внутреннего контура Lц1 (площадь н-к-г-т-с-н) увеличивается на величину затененной области.
На фиг. 3 показан термодинамический цикл ТРДД (внешний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-с' - расширение газа в сопле внешнего контура. Расширение воздуха происходит с подводом тепла из внутреннего контура ТРДД, что ведет к появлению работы цикла внешнего контура Lц2 (затененная область), которая в прототипе отсутствует.
Работа цикла ТРДД определяется как Lц=Lц1+m⋅Lц2, где m - степень двухконтурности ТРДД.
Таким образом, работа цикла ТРДД увеличивается по трем взаимосвязанным причинам:
увеличивается работа цикла внутреннего контура Lц1 (фиг. 2, затененная область), как результат увеличения перепада давлений в турбине привода вентилятора вследствие использования выходного патрубка;
увеличивается степень двухконтурности m, как результат совместной работы вентилятора и выходного патрубка;
увеличивается работа цикла внешнего контура Lц2 (фиг. 3), как результат совместной работы вентилятора и выходного патрубка.
Увеличение работы цикла внутреннего контура Lц1 при неизменной степени повышения давления воздуха в вентиляторе повышает расход воздуха через внешний контур, т.е. степень двухконтурности m. Повышение степени двухконтурности m улучшает теплообмен между газом внутреннего контура (выходным патрубком) и воздухом внешнего контура, что повышает работу цикла внешнего контура Lц2.
По отношению к прототипу (ТРДД с раздельными контурами) работа цикла Lц при тех же параметрах цикла увеличивается, а следовательно, увеличивается эффективный к.п.д. ТРДД, так как подвод энергии (процесс к-г) тот же.
Повышение степени двухконтурности т, как следствие совместной работы вентилятора и выходного патрубка (см. выше), повышает полетный к.п.д. ТРДД.
Соответственно, общий к.п.д. ТРДД, который определяется как произведение эффективного и полетного к.п.д., повышается (по предварительной оценке на 3÷5%).
Таким образом, предложена новая газодинамическая схема ТРДД с отличительными признаками, указанными в формуле изобретения, в которой влияние отличительных признаков (совместная работа вентилятора и выходного патрубка) на конечный результат (повышение общего к.п.д. ТРДД), ранее не было известно.
Двухконтурный турбореактивный двигатель предназначен для использования в гражданской и военно-транспортной авиации.
название | год | авторы | номер документа |
---|---|---|---|
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2017 |
|
RU2661427C1 |
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ | 2019 |
|
RU2701034C1 |
ГАЗОТУРБИННАЯ УСТАНОВКА | 2017 |
|
RU2675167C1 |
ДВУХКОНТУРНАЯ ГАЗОТУРБИННАЯ УСТАНОВКА | 2019 |
|
RU2704435C1 |
ЭНЕРГОУСТАНОВКА | 2017 |
|
RU2673948C1 |
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА | 2017 |
|
RU2666701C1 |
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ | 2018 |
|
RU2674089C1 |
СПОСОБ ОХЛАЖДЕНИЯ ДВУХКОНТУРНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 2015 |
|
RU2617026C1 |
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОТУРБИННАЯ УСТАНОВКА | 2018 |
|
RU2671264C1 |
ДВУХКАМЕРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) | 2000 |
|
RU2187009C2 |
Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти состоит из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого канала и сопла. Двигатель снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура и состоящим из расширяющихся каналов, расположенных внутри внешнего контура и сообщенных с атмосферой. Изобретение позволяет повысить перепад давлений в турбине привода вентилятора, передать часть теплоты из внутреннего контура во внешний контур, что позволяет повысить эффективный и полетный к.п.д. 3 ил.
Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти, состоящий из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого канала и сопла, отличающийся тем, что двигатель снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура и состоящим из расширяющихся каналов, расположенных внутри внешнего контура и сообщенных с атмосферой.
Способ работы комбинированного воздушно-реактивного двигателя и устройство для его осуществления | 1989 |
|
SU1747730A1 |
Способ контроля исправности нити светофорной лампы для кодовой автоблокировки | 1949 |
|
SU82778A1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ С РЕГЕНЕРАЦИЕЙ ТЕПЛА | 2000 |
|
RU2192551C2 |
Теория и расчет воздушно-реактивных двигателей | |||
Под ред | |||
С.М | |||
ШЛЯХТЕНКО, М.: Машиностроение, 1987, с | |||
Печь для сжигания твердых и жидких нечистот | 1920 |
|
SU17A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
RU 2013139133 A, 27.02.2015 | |||
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
EP 3032068 A1, 15.06.2016. |
Авторы
Даты
2018-10-11—Публикация
2017-04-12—Подача