ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ Российский патент 2018 года по МПК F02K3/04 F02K3/115 

Описание патента на изобретение RU2669420C1

Изобретение относится к авиадвигателестроению.

Основным трендом для ТРДД является повышение их экономичности. Достигается это за счет увеличения эффективного и полетного к.п.д. ТРДД. Эффективный к.п.д. ТРДД можно повысить двумя способами: за счет изменения вида термодинамического цикла ТРДД, и за счет изменения его параметров. Полетный к.п.д. ТРДД можно повысить за счет повышения степени двухконтурности ТРДД, величина которой, в конечном счете, определяется тем же термодинамическим циклом ТРДД (чем больше работа цикла, тем больше степень двухконтурности).

Целью изобретения является повышение экономичности ТРДД.

Известны двухконтурные турбореактивные двигатели с раздельными контурами со степенями двухконтурности более десяти (например, Trent 1000, НК-93 и др.), состоящие из входного устройства, вентилятора; внутреннего контура, внутри которого расположены: компрессор (компрессоры), камера сгорания, турбины, сопло; внешнего контура, состоящего из кольцевого канала и сопла (Теория и расчет воздушно-реактивных двигателей / Под ред. С.М. Шляхтенко. - М.: Машиностроение, 1987, с. 17, рис. 1.3).

Известны турбовинтовые газотурбинные двигатели с регенерацией тепла (там же, с. 354, рис. 11.3).

Известны турбовальные газотурбинные двигатели, у которых за свободной турбиной устанавливается не сопло, а диффузорный выходной патрубок (Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Ч. 2. - М.: Машиностроение, 1978, с. 268, рис. 19.2).

Поставленная цель достигается тем, что в ТРДД с раздельными контурами со степенью двухконтурности более десяти снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура (вместо сопла) и состоящим из расширяющихся каналов, расположенных внутри внешнего контура, сообщенных с атмосферой.

Сущность изобретения заключается в том, что выходной патрубок позволяет: а) увеличить степень понижения давления в турбине привода вентилятора; б) изменить вид термодинамического цикла ТРДД; в) осуществить регенерацию теплоты во внешнем контуре.

На фиг. 1 показан ТРДД;

на фиг. 2 показан термодинамический цикл ТРДД (внутренний контур);

на фиг. 3 показан термодинамический цикл ТРДД (внешний контур).

Двухконтурный ТРД (фиг. 1) состоит из входного устройства 1, вентилятора 2, внутреннего и внешнего контуров. Во внутреннем контуре расположены: компрессоры 3, камера сгорания 4, турбины 5, выходной патрубок 6, состоящий из диффузорных каналов, которые расположены внутри внешнего контура 7 и сообщены с атмосферой. Внешний контур 7 представляет собой кольцевой канал, заканчивающийся соплом 8.

Работа двигателя не отличается от работы ТРДД с раздельными контурами, за исключением работы турбины 5 и выходного устройства (патрубок 6). В турбине 5 срабатывается перепад давлений, превышающий располагаемый перепад давлений (отношение давления газа перед турбиной к атмосферному). В результате скорость газа за турбиной увеличивается, а статическое давление становится меньше атмосферного. В диффузорных каналах 6 газ тормозится до скорости, при которой его статическое давление становится равным атмосферному, после чего газ истекает в атмосферу.

Каналы 6 обдуваются воздухом внешнего контура, температура которого меньше температуры выхлопных газов. Между горячим газом и воздухом устанавливается тепловой поток, в результате которого температура выхлопных газов понижается, а температура воздуха повышается. Понижение температуры выхлопных газов снижает затраты энергии на их сжатие при торможении в каналах 6, а так же уменьшает потери с выхлопом. Повышение температуры воздуха увеличивает скорость истечения воздуха из сопла 8, которая, как известно, пропорциональна корню квадратному из указанной температуры.

На фиг. 2 показан термодинамический цикл ТРДД (внутренний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-к - сжатие воздуха в компрессорах; к-г - процесс в камере сгорания; г-тк - расширение газа в турбинах привода компрессоров; тк-т - расширение газа в турбине привода вентилятора; т-с - сжатие газа в каналах выходного патрубка. Сжатие газа происходит с отводом тепла во внешний контур ТРДД (температура газа приближается к температуре воздуха наружного контура Тв* - точка с). Работа цикла внутреннего контура Lц1 (площадь н-к-г-т-с-н) увеличивается на величину затененной области.

На фиг. 3 показан термодинамический цикл ТРДД (внешний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-с' - расширение газа в сопле внешнего контура. Расширение воздуха происходит с подводом тепла из внутреннего контура ТРДД, что ведет к появлению работы цикла внешнего контура Lц2 (затененная область), которая в прототипе отсутствует.

Работа цикла ТРДД определяется как Lц=Lц1+m⋅Lц2, где m - степень двухконтурности ТРДД.

Таким образом, работа цикла ТРДД увеличивается по трем взаимосвязанным причинам:

увеличивается работа цикла внутреннего контура Lц1 (фиг. 2, затененная область), как результат увеличения перепада давлений в турбине привода вентилятора вследствие использования выходного патрубка;

увеличивается степень двухконтурности m, как результат совместной работы вентилятора и выходного патрубка;

увеличивается работа цикла внешнего контура Lц2 (фиг. 3), как результат совместной работы вентилятора и выходного патрубка.

Увеличение работы цикла внутреннего контура Lц1 при неизменной степени повышения давления воздуха в вентиляторе повышает расход воздуха через внешний контур, т.е. степень двухконтурности m. Повышение степени двухконтурности m улучшает теплообмен между газом внутреннего контура (выходным патрубком) и воздухом внешнего контура, что повышает работу цикла внешнего контура Lц2.

По отношению к прототипу (ТРДД с раздельными контурами) работа цикла Lц при тех же параметрах цикла увеличивается, а следовательно, увеличивается эффективный к.п.д. ТРДД, так как подвод энергии (процесс к-г) тот же.

Повышение степени двухконтурности т, как следствие совместной работы вентилятора и выходного патрубка (см. выше), повышает полетный к.п.д. ТРДД.

Соответственно, общий к.п.д. ТРДД, который определяется как произведение эффективного и полетного к.п.д., повышается (по предварительной оценке на 3÷5%).

Таким образом, предложена новая газодинамическая схема ТРДД с отличительными признаками, указанными в формуле изобретения, в которой влияние отличительных признаков (совместная работа вентилятора и выходного патрубка) на конечный результат (повышение общего к.п.д. ТРДД), ранее не было известно.

Двухконтурный турбореактивный двигатель предназначен для использования в гражданской и военно-транспортной авиации.

Похожие патенты RU2669420C1

название год авторы номер документа
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2017
  • Письменный Владимир Леонидович
RU2661427C1
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2019
  • Письменный Владимир Леонидович
RU2701034C1
ГАЗОТУРБИННАЯ УСТАНОВКА 2017
  • Письменный Владимир Леонидович
RU2675167C1
ДВУХКОНТУРНАЯ ГАЗОТУРБИННАЯ УСТАНОВКА 2019
  • Письменный Владимир Леонидович
RU2704435C1
ЭНЕРГОУСТАНОВКА 2017
  • Письменный Владимир Леонидович
RU2673948C1
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА 2017
  • Письменный Владимир Леонидович
RU2666701C1
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ 2018
  • Письменный Владимир Леонидович
RU2674089C1
СПОСОБ ОХЛАЖДЕНИЯ ДВУХКОНТУРНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2015
  • Письменный Владимир Леонидович
RU2617026C1
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОТУРБИННАЯ УСТАНОВКА 2018
  • Письменный Владимир Леонидович
RU2671264C1
ДВУХКАМЕРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) 2000
  • Письменный В.Л.
RU2187009C2

Иллюстрации к изобретению RU 2 669 420 C1

Реферат патента 2018 года ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти состоит из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого канала и сопла. Двигатель снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура и состоящим из расширяющихся каналов, расположенных внутри внешнего контура и сообщенных с атмосферой. Изобретение позволяет повысить перепад давлений в турбине привода вентилятора, передать часть теплоты из внутреннего контура во внешний контур, что позволяет повысить эффективный и полетный к.п.д. 3 ил.

Формула изобретения RU 2 669 420 C1

Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти, состоящий из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого канала и сопла, отличающийся тем, что двигатель снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура и состоящим из расширяющихся каналов, расположенных внутри внешнего контура и сообщенных с атмосферой.

Документы, цитированные в отчете о поиске Патент 2018 года RU2669420C1

Способ работы комбинированного воздушно-реактивного двигателя и устройство для его осуществления 1989
  • Глебов Геннадий Александрович
  • Давлетшина Татьяна Германовна
  • Демидов Герман Викторович
SU1747730A1
Способ контроля исправности нити светофорной лампы для кодовой автоблокировки 1949
  • Пушкарев Б.Н.
SU82778A1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ С РЕГЕНЕРАЦИЕЙ ТЕПЛА 2000
  • Пожаринский А.А.
  • Торопчин С.В.
  • Кузнецов В.А.
RU2192551C2
Теория и расчет воздушно-реактивных двигателей
Под ред
С.М
ШЛЯХТЕНКО, М.: Машиностроение, 1987, с
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
RU 2013139133 A, 27.02.2015
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
EP 3032068 A1, 15.06.2016.

RU 2 669 420 C1

Авторы

Письменный Владимир Леонидович

Даты

2018-10-11Публикация

2017-04-12Подача