Вертикальный ротор ветроводяного двигателя Российский патент 2018 года по МПК F03D3/06 F03D7/06 

Описание патента на изобретение RU2670854C9

1. Область техники, к которой относится изобретение

Изобретение относится к области ветроэнергетики и может быть использовано в составе двигателей, осуществляющих преобразование кинетической энергии ветра либо потока воды или другой несжимаемой жидкости для выработки электроэнергии или выполнения механической работы.

2. Уровень техники

В настоящее время известен целый ряд вертикальных роторных устройств предназначенных для взаимодействия с ветром или потоком воды с целью преобразования кинетической энергии движущегося потока в электрическую энергию.

В частности известно устройство «Вертикальная структура ветровой или гидравлической турбины» (патент ЕР 2657514 F03D 3/06 от 30.10.2013) состоящее из осевого стержня с возможностью вращения вокруг вертикальной оси, не менее двух прямых или спирально закрученных вертикальных лопастей, имеющих крыльевой профиль, а также не менее двух спиц, также имеющих крыльевой профиль, радиально и симметрично расходящихся от упомянутого стержня, обеспечивающих механическую связь упомянутого стержня с упомянутыми лопастями, которые могут быть сгруппированы в первый и второй спицевые наборы по три спицы в каждом, так что первый спицевой набор расположен выше второго спицевого набора.

Достоинством данного устройства относится легкость и простота монтажа, а также общая механическая устойчивость конструкции.

Недостатком устройства является сравнительно низкий коэффициент использования кинетической энергии ветра либо жидкости.

Из известных устройств наиболее близким по технической сущности к настоящему изобретению является устройство раскрытое в патенте US 20120201687 А1 F03D 3/06 от 09.08.2012, представляющее собой вертикальную ветровую турбину, содержащую лопасть или лопасти, прикрепленные к осевому стержню с помощью спицы (спиц), такие что угловой размер каждой из указанных лопастей в направлении оси вращения составляет от 50° до 200°, причем указанные лопасти обладают несимметричным профилем, а расстояние между передней и задней кромками каждой из указанных лопастей не меняется по всей длине каждой из указанных лопастей.

Указанное устройство обеспечивает несколько более высокий коэффициент использования энергии ветра, однако в представленной конструкции имеется резерв для дальнейшей оптимизации, который не был использован.

3. Раскрытие изобретения

Ветровые и гидроэнергетические установки в настоящее время являются одними из самых популярных альтернативных источников энергии и находят все более широкое применение в государственных и частных хозяйствах. Их главными достоинствами является экологическая чистота и сравнительная легкость монтажа и быстрота развертывания. Основной их задачей является преобразование кинетической энергии поступательного движения ветра или воды в электрическую энергию путем промежуточного преобразования в кинетическую энергию вращательного движения двигателя ветровой или гидроэнергетической установки.

Основным показателем экономической эффективности подобных установок является отношение суммы стоимостей производства, установки и эксплуатации к суммарной стоимости электроэнергии, произведенной за время жизненного цикла установки. Соответственно, повышение экономической эффективности подобных установок может достигаться удешевлением их производства, установки и эксплуатации, увеличением длительности их жизненного цикла и увеличением количества производимой ими за время жизненного цикла электроэнергии.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в повышения эффективности использования кинетической энергии ветра либо потока воды или другой несжимаемой жидкости, выступающей в качестве рабочего тела ротора, за счет повышения эффективности ее преобразования в кинетическую энергию вращательного движения двигателя ветровой или гидроэнергетической установки.

Достижение технического результата осуществляется за счет того, что вертикальный ротор ветроводяного двигателя, состоящий из: ступицы с возможностью вращения в горизонтальной плоскости вокруг осевой линии указанного ротора, не менее двух спирально закрученных вокруг осевой линии указанного ротора вертикально вытянутых лопастей, таких что все точки центральной линии каждой из указанных лопастей равноудалены от осевой линии указанного вертикального ротора, а профили срезов верхней и нижней концевых частей указанных лопастей представляют собой плоскости, параллельные плоскости вращения указанного ротора, причем угловой размер каждой из указанных лопастей в плоскости вращения ротора лежит в пределах от 50° до 200° включительно, при этом каждая из указанных лопастей на всем своем протяжении имеет двояковыпуклый симметричный крыльевой профиль, такой что характеристики указанного профиля остаются неизменными на всем протяжении каждой из указанных лопастей и хорда указанного профиля на всем протяжении каждой из указанных лопастей перпендикулярна кратчайшей линии между точкой центра давления указанного профиля и осевой линией указанного вертикального ротора, не менее двух спицевых наборов, состоящих из двух или более спиц каждый, таких что каждая из указанных спиц одним концом крепится к указанной ступице, а другим концом крепится к одной из указанных лопастей, причем для каждого из указанных спицевых наборов точки крепления каждой из указанных спиц в указанном спицевом наборе к указанным лопастям указанного ротора лежат в одной плоскости, параллельной плоскости вращения указанного ротора, а точки крепления указанных спиц в каждом из указанных спицевых наборов к ступице находятся в одной точке относительно осевой линии указанного ротора, при этом каждая из указанных спиц на всем своем протяжении имеет двояковыпуклый симметричный крыльевой профиль, такой что средняя линяя указанного профиля параллельна плоскости вращения указанного ротора, а длина указанной средней линии указанного профиля уменьшается по мере удаления вдоль указанной спицы от указанной ступицы, сделан так, что угол скольжения указанных лопастей, определяемый как угол между проекцией центральной линии каждой из указанных лопастей на плоскость, перпендикулярную плоскости вращения ротора и содержащую точки центров давления профилей срезов верхнего и нижнего концевых частей указанной лопасти, и проекцией оси вращения указанного ротора на ту же плоскость принимает значения от 20° до 45°.

4. Краткое описание чертежей

Изобретение поясняется чертежами где:

Фиг. 1. - Внешний вид вертикального ротора ветроводяного двигателя, содержащего следующие элементы:

1 - ступица;

11-12 - узлы крепления спиц спицевых наборов к ступице;

13 - соединительный фрагмент ступицы;

21-23 - лопасти;

31-32 - спицевые наборы;

311-313 - спицы первого спицевого набора;

321-323 - спицы второго спицевого набора.

Фиг. 2. - Геометрический смысл основных параметров ротора ветроводяного двигателя. На фигуре представлены:

γ1 - угол скольжения,°;

γ2 - угловой размер лопасти,°;

L - длина хорды профиля лопасти, см.

Фиг. 3. - Распределение значений вращающего момента ротора в зависимости от значений угла скольжения γ1 и углового размера лопасти γ2. На фигуре представлены:

γ1 - угол скольжения лопасти,°;

γ2 - угловой размер лопасти,°;

М - вращающий момент ротора, Н⋅м.

Фиг. 4. - Распределение значений вращающего момента ротора в зависимости от значений длины хорды профиля вертикальной лопасти. На фигуре представлены:

N - длина хорды профиля вертикальной лопасти, см;

М - вращающий момент ротора, Н⋅м.

5. Осуществление изобретения

Внешний вид предлагаемого вертикального ротора ветроводяного двигателя представлен на фиг. 1.

Вертикальный ротор ветроводяного двигателя, состоит из: ступицы 1, включающей в себя узлы крепления спицевых наборов 11, 12 и соединительный фрагмент 13, вертикально вытянутых лопастей 21, 22 и 23, не менее двух спицевых наборов 31, 32 состоящих из двух или более спиц каждый (311, 312, 313 и 321, 322, 323 соответственно), соединяющих указанную ступицу с указанными лопастями.

Принцип работы устройства заключается в том, что направленный поток воздуха, воды или иной жидкости воздействует на вертикальные спирально закрученные лопасти 21-23, сообщая им движение за счет их парусности. Причем спиральное закручивание лопастей позволяет им одинаково реагировать на поток воздуха или жидкости с любого направления в плоскости вращения ротора.

Каждая из спиц 311-313 и 321-323, входящих в спицевые наборы 31 и 32 соответственно, одним концом крепятся к указанным вертикально вытянутым лопастям 21-23, а другим концом к ступице 1 в узлах крепления 11 и 12 соответственно. Указанные спицы осуществляют механическую связь вертикально вытянутых лопастей со ступицей, так что движение вертикальных лопастей передается ступице, сообщая ей вращательное движение вокруг своей оси.

В результате в роторе ветроводяного двигателя создается вращающий момент, который приводит к закручиванию ротора вокруг вертикальной оси и, тем самым, осуществляется преобразование кинетической энергии поступательного движения воздуха, воды или иной несжимаемой жидкости во вращательное движение ротора.

Определяющими параметрами предлагаемого ротора ветроводяного двигателя с точки зрения величины вращающего момента будут являться следующие: угол скольжения лопастей, угловой размер лопасти в плоскости вращения ротора ветроводяного двигателя и длина хорды профиля лопастей. Геометрический смысл упомянутых угловых параметров поясняется с помощью фиг. 2.

Согласно, представленной фиг. 2, угол скольжения γ1 определяется как угол между проекцией центральной линии лопасти на плоскость, перпендикулярную плоскости вращения ротора и содержащую точки центров давления профилей срезов верхней и нижней концевых частей лопасти, и проекцией осевой линии ротора на эту же плоскость, угловой размер лопасти γ2. определяется как угол между проекциями линии, соединяющей точку центра давления профиля среза верхней концевой части лопасти с осевой линией, и линии, соединяющей точку центра давления профиля среза нижней концевой части лопасти с осевой линией, на плоскость вращения ротора.

Длина хорды профиля лопасти L определяется как длина участка прямой, лежащей в плоскости вращения ротора, и соединяющей две наиболее удаленные друг от друга точки профиля сечения лопасти ротора. Однако учитывая, что предлагаемый ротор ветроводяного двигателя может изготовляться в различных типоразмерах, определяемых особенностями области его практического применения, данный параметр удобно измерять в угловых единицах. Длина хорды профиля лопасти в этом случае, будет определяться как величина угла, образуемого прямыми, отложенными от наиболее удаленных друг от друга точек профиля лопасти и центром вращения ротора.

При таком подходе длину хорды профиля лопасти можно измерять в градусах или в радианах. При проведении моделирования работы предлагаемого ротора ветроводяного двигателя использовалась градусная мера.

На основании математического моделирования были проведены расчеты, показывающие распределение зависимости вращающего момента ротора M(γ12) от угла скольжения γ1 и углового размера γ2 указанных лопастей модели ротора с заданными физическими размерами. Рассчитанные значения вращающего момента ротора, рассчитанные в Ньютон-метрах при фиксированных значениях линейных размеров ротора, представлены в приведенной ниже таблице.

Представленные в таблице значения демонстрируют возрастание значений суммарного вращающего момента М при уменьшении угла γ1 и увеличении угла γ2. Причем следует отметить, что по мере упомянутого изменения значений углов γ1 и γ2, скорость нарастания значений момента М увеличивается. Ограничивающими факторами в данном процессе выступают конструктивные особенности материалов, используемых для изготовления ротора, связанные с массой и жесткостью конструкции ротора, поэтому значительный технико-экономический эффект будет наблюдаться в диапазоне значений угла γ1 от 20° до 45°.

Третьим параметром, определяющим величину момента вращения вертикального ротора ветроводяного двигателя, как уже было сказано, будет являться длина хорды профиля лопастей.

Проведенное моделирование показывает, что значение вращающего момента ротора увеличивается практически линейно по мере роста углового значения длины хорды профиля лопасти предлагаемого ротора в рамках предельных значений, определяемых конструктивными особенностями предлагаемого ротора и составляющих диапазон от 4° до 20°.

Для облегчения транспортировки и монтажа ротора ветроводяного двигателя, а также ускорения развертывания содержащей его ветровой или гидроэнергетической установки, ротор ветроводяного двигателя выполнен в виде сборной конструкции, состоящей из отдельных сегментов, соединяющихся между собой.

Похожие патенты RU2670854C9

название год авторы номер документа
РОТОР ВЕТРЯНОЙ УСТАНОВКИ С ВЕРТИКАЛЬНОЙ ОСЬЮ ВРАЩЕНИЯ (ВАРИАНТЫ) 2006
  • Грахов Юрий Васильевич
  • Кривоспицкий Владимир Павлович
  • Кривцов Владимир Иванович
  • Максимов Василий Филиппович
  • Соломин Евгений Викторович
  • Ричард Холстед
  • Глен Дахлбакка
RU2347104C2
Ротор вертикально-осевой ветряной установки 2019
  • Коротаев Михаил Валерьевич
  • Костров Сергей Юрьевич
  • Козлов Михаил Александрович
  • Завацкий Александр Евгеньевич
RU2705531C1
Крыльчатый двигатель 2020
  • Шитиков Александр Геннадьевич
  • Семиченко Владимир Иванович
  • Борковец Дмитрий Васильевич
RU2743564C1
РОТОР ВЕРТИКАЛЬНО-ОСЕВОГО ВЕТРОДВИГАТЕЛЯ 1997
  • Мумин О.Л.
  • Иоффе В.Ш.
  • Андреев С.С.
RU2122650C1
ПРЯМОПРИВОДНОЙ ГЕНЕРАТОР ИЛИ ДВИГАТЕЛЬ ДЛЯ ВЕТРО- ИЛИ ГИДРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ИЛИ СУДНА И СПОСОБ СБОРКИ ТАКОЙ УСТАНОВКИ 2006
  • Борген Ейстайн
RU2438041C2
РОТОР ВЕТРОДВИГАТЕЛЯ 1998
  • Кузнецов А.И.
RU2136960C1
РОТОР ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2000
  • Кузнецов А.И.
RU2174190C1
ТУННЕЛЬНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С ГОРИЗОНТАЛЬНОЙ ОСЬЮ ВРАЩЕНИЯ РОТОРА 2016
  • Сташур Роман
RU2721743C2
КОМПЛЕКС ВЕТРОЭНЕРГЕТИЧЕСКИЙ 2007
  • Лебедев Владимир Николаевич
  • Шим Сан-Воок
RU2340789C1
Ротор ветродвигателя 1990
  • Викторук Василий Андреевич
SU1817819A3

Иллюстрации к изобретению RU 2 670 854 C9

Реферат патента 2018 года Вертикальный ротор ветроводяного двигателя

Изобретение относится к области. Вертикальный ротор ветроводяного двигателя, состоит из: ступицы, включающей в себя узлы крепления спиц из состава упомянутых ниже спицевых наборов, соединительный фрагмент или фрагменты, соединяющие узлы крепления между собой, не менее двух вертикально вытянутых лопастей, не менее двух спицевых наборов, состоящих из двух или более спиц, имеющих крыльевой профиль, соединяющих указанную ступицу с указанными вертикальными лопастями. Угол скольжения указанных лопастей принимает значения от 20° до 45°. Изобретение направлено на повышение эффективности использования кинетической энергии ветра либо потока воды или другой несжимаемой жидкости за счет повышения эффективности ее преобразования в кинетическую энергию вращательного движения двигателя ветровой или гидроэнергетической установки. 4 з.п. ф-лы, 4 ил., 1 табл.

Формула изобретения RU 2 670 854 C9

1. Вертикальный ротор ветроводяного двигателя, состоящий из: ступицы, с возможностью вращения в горизонтальной плоскости вокруг осевой линии указанного ротора, не менее двух спирально закрученных вокруг осевой линии указанного ротора вертикально вытянутых лопастей, таких что все точки центральной линии каждой из указанных лопастей равноудалены от осевой линии указанного вертикального ротора, а профили срезов верхней и нижней концевых частей указанных лопастей представляют собой плоскости, параллельные плоскости вращения указанного ротора, причем угловой размер каждой из указанных лопастей в плоскости вращения ротора лежит в пределах от 50° до 200° включительно, не менее двух спицевых наборов, состоящих из двух или более спиц каждый, таких что каждая из указанных спиц одним концом крепится к указанной ступице, а другим концом крепится к одной из указанных лопастей, причем для каждого из указанных спицевых наборов точки крепления каждой из указанных спиц в указанном спицевом наборе к указанным лопастям указанного ротора лежат в одной плоскости, параллельной плоскости вращения указанного ротора, а узлы крепления указанных спиц в каждом из указанных спицевых наборов к ступице находятся в одной точке относительно осевой линии указанного ротора, отличающийся тем, что угол скольжения указанных лопастей, определяемый как угол между проекцией центральной линии каждой из указанных лопастей на плоскость, перпендикулярную плоскости вращения ротора и содержащую точки центров давления профилей срезов концевых частей данной лопасти, и проекцией оси вращения указанного ротора на ту же плоскость, принимает значения от 20° до 45°.

2. Ротор ветроводяного двигателя по п. 1, отличающийся тем, что каждая из указанных лопастей на всем своем протяжении имеет двояковыпуклый симметричный крыльевой профиль, такой что характеристики указанного профиля остаются неизменными на всем протяжении каждой из указанных лопастей, а длина хорды профиля каждой из указанных лопастей, измеренная в угловых градусах как величина угла, образуемого прямыми, отложенными от наиболее удаленных друг от друга точек профиля лопасти к центру вращения ротора, составляет от 4° до 20°.

3. Ротор ветроводяного двигателя по п. 1, отличающийся тем, что каждая из указанных спиц на всем своем протяжении имеет двояковыпуклый симметричный крыльевой профиль, такой что средняя линяя указанного профиля параллельна плоскости вращения указанного ротора, а длина указанной средней линии указанного профиля уменьшается по мере удаления вдоль указанной спицы от указанной ступицы.

4. Ротор ветроводяного двигателя по п. 1, отличающийся тем, что указанная ступица состоит из узлов крепления указанных спиц каждого из указанных спицевых наборов к указанной ступице и одного или нескольких соединительных фрагментов, механически объединяющих указанные узлы крепления в единую конструкцию указанной ступицы.

5. Ротор ветроводяного двигателя по п. 1, отличающийся тем, что указанный ротор выполнен в виде сборной конструкции, состоящей из отдельных сегментов, скрепляющихся между собой.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670854C9

US 2012201687 A1, 09.08.2012
Ветродвигатель с вертикальной осью вращения 1986
  • Лятхер Виктор Михайлович
SU1437566A1
Ротор ветродвигателя 1989
  • Лятхер Виктор Михайлович
SU1645602A1
ГИДРОЭЛЕКТРИЧЕСКАЯ ЭНЕРГОСИСТЕМА И ТУРБИНА В ТРУБЕ 2010
  • Шлабах Родерик А.
  • Косби Марк Райделл
  • Курт Эдвард
  • Паллей Игорь
  • Смит Грег
RU2526604C2
ВЕТРЯНАЯ ТУРБИНА С ВЕРТИКАЛЬНОЙ ОСЬЮ ВРАЩЕНИЯ 2010
  • Беляков Павел Юрьевич
  • Тикунов Алексей Владимирович
RU2470181C2
КРИСТАЛЛИЗАТОР ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ 1996
  • Уманец В.И.
  • Копылов А.Ф.
  • Чумарин Б.А.
  • Лебедев В.И.
RU2106928C1

RU 2 670 854 C9

Авторы

Желтов Сергей Юрьевич

Бондаренко Александр Викторович

Силаев Николай Жанович

Гудков Александр Вячеславович

Визильтер Юрий Валентинович

Князь Владимир Александрович

Ососков Михаил Владимирович

Иловайская Елена Борисовна

Бондарев Александр Евгеньевич

Жуков Виктор Тимофеевич

Галактионов Владимир Александрович

Мануковский Константин Викторович

Феодоритова Ольга Борисовна

Новикова Наталья Дмитриевна

Андреев Сергей Валерьевич

Ермаков Олег Эрнестович

Даты

2018-10-25Публикация

2017-11-24Подача