Изобретение относится к оптоэлектронике, в частности, к составам покрытий полупроводниковых материалов, усиливающих
электролюминесценцию, на базе которых могут быть созданы мощные излучающие светодиоды диапазона 450 нм. На данный момент известно, что при электролюминесценции полупроводников возможно усиление интенсивности люминесценции при нахождении рядом с полупроводником (расстояние до 200 нм) металлических наноструктур с частотой плазмонного резонанса, совпадающей с частотой излучения гетероперехода полупроводника. Также известно, что оксид цинка является уникальным материалом в качестве покрытий для светодиодов: это теплопроводящий и электропроводящий материал, обладает высоким показателем преломления, то есть способен рассеивать проходящее через него оптическое излучение на очень широкие углы, что важно при его использовании в светодиодах осветительной техники.
Известно вещество покрытия для светодиодов, патент №US 2005/0285128 А1, опубликован 29 декабря 2005 года, состоящее из металлического слоя толщиной в нанометры, позволяющее усиливать электролюминесценцию. Недостатком аналога является максимум усиления на 470 нм, а не 450 (длина волны излучения стандартного светодиода для ламп освещения) без возможности регулировки максимума длины волны усиления, а также отсутствие возможности плавной регулировки коэффициента усиления, так как есть только один варьируемый параметр покрытия - это его толщина.
Известно вещество покрытия из полиметилметакрилата (пмма) для светодиодов диапазона 400-1200 нм, патент РФ 172493 U1, опубликован 11 июля 2017 года, с наночастицами серебра для усиления электролюминесценции в 3-4 раза. Недостатком аналога является низкая температура размягчения пмма 160°С и температура воспламенения 260°С, что делает его малоприменимым при использовании в мощных светодиодах. Недостатком аналога является низкий показатель преломления покрытия -1.49, что затрудняет выход света из полупроводниковых структур вследствие появления эффекта полного внутреннего отражения и понижает угол рассеяния света. Также недостатком аналога является низкая теплопроводность и низкая проводимость, что делает невозможным его использования в качестве проводящего прозрачного электрода.
Известно покрытие, взятое в качестве прототипа (патент №US 2010/0203454 А1, опубликован 12 августа 2010 года), состоящее из слоя прозрачного полупроводникового оксида (в том числе и ZnO) и наночастиц (в том числе и наночастиц серебра) для повышения проводимости и управления оптическими свойствами. Недостатком прототипа является отсутствие эффекта усиления электролюминесценции гетероструктур на длине волны 450 нм.
Изобретение решает задачу усиления электролюминесценции полупроводников на длине волны 450 нм. Поставленная задача решается за счет достижения технического результата, заключающегося в повышении интенсивности излучения светодиодов с предложенным покрытием. Предложенный состав вещества и его структура обеспечивают усиление электролюминесценции полупроводников, излучающих на длине волны 450 нм. Данный технический результат достигается тем, что прозрачный проводящий оксид, содержащий слой оксида цинка и слои наночастиц серебра, отличается тем, что оксид цинка легирован ионами алюминия в концентрации от 1 до 3 молярных процентов, наночастицы серебра имеют размеры 30-40 нм и максимальную концентрацию 1,25 1016/см3, а максимальная толщина слоя ZnO составляет 200 нм.
Сущность заявляемого изобретения поясняется следующим.
В основе изобретения лежит усиление наночастицами серебра электролюминесценции полупроводников, излучающих на длине волны 450 нм. Данный тип светодиодов используется в лампах белого светодиодного освещения в качестве основного источника излучения.
При расстоянии менее 200 нм металлических наночастиц серебра от излучающих полупроводников за счет эффекта плазмонного усиления уменьшается время рекомбинации электронов и дырок, что ведет в свою очередь к повышению интенсивности люминесценции, так как увеличивается количество носителей, попадающих за единицу времени в зону проводимости и переходящих обратно в валентную зону полупроводника за счет излучательного перехода.
В изобретении применен оксид цинка, легированный ионами алюминия. Согласно проведенным экспериментам, при вводе ионов алюминия от 1 до 3 молярных процентов показатель преломления составляет 2,12. Это значение превышает показатель преломления оксида цинка в аналоге (1,96), а значит лучше рассеивает свет, что является улучшением характеристик светодиода, в котором такие вещества применяются.
В изобретении используются слой оксида цинка, легированного ионами алюминия, и слои наночастиц серебра. Получено экспериментальное усиление электролюминесценции светодиода, излучающего на длине волны 450 нм с покрытием из патентуемого вещества в 5 раз по сравнению со светодиодом, излучающим на длине волны 450 нм, без патентуемого покрытия.
Таким образом, изобретение обеспечивает решение задачи по усилению электролюминесценции светодиода на длине волны 450 нм, регулировке усиления и эффективному рассеянию этого излучения в окружающую среду.
название | год | авторы | номер документа |
---|---|---|---|
Прозрачный проводящий оксид | 2018 |
|
RU2701467C1 |
Прозрачный проводящий оксид с наночастицами золота | 2018 |
|
RU2701468C1 |
Устройство фотовольтаики | 2019 |
|
RU2728247C1 |
СВЕТОИЗЛУЧАЮЩИЙ ПОЛУПРОВОДНИКОВЫЙ ПРИБОР НА ОСНОВЕ ЭЛЕМЕНТОВ II-VI ГРУПП | 2013 |
|
RU2639605C2 |
МНОГОПЕРЕХОДНОЕ ФОТОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО | 2011 |
|
RU2554290C2 |
ОКСИДНЫЙ ПОЛУПРОВОДНИК Р-ТИПА, КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ОКСИДНОГО ПОЛУПРОВОДНИКА Р-ТИПА, СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО ПОЛУПРОВОДНИКА Р-ТИПА, ПОЛУПРОВОДНИКОВЫЙ КОМПОНЕНТ, ОТОБРАЖАЮЩИЙ ЭЛЕМЕНТ, УСТРОЙСТВО ОТОБРАЖЕНИЯ ИЗОБРАЖЕНИЙ И СИСТЕМА | 2014 |
|
RU2660407C2 |
УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ | 2009 |
|
RU2516242C2 |
РЕШЕТКА ДИПОЛЬНЫХ НАНОЛАЗЕРОВ | 2013 |
|
RU2569050C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2019 |
|
RU2721166C1 |
ЛИЦЕВОЙ КОНТАКТ С ПРОМЕЖУТОЧНЫМ СЛОЕМ (СЛОЯМИ), СМЕЖНЫМ(И) С НИМ ДЛЯ ИСПОЛЬЗОВАНИЯ В ФОТОЭЛЕКТРИЧЕСКИХ УСТРОЙСТВАХ, И СПОСОБ ЕГО ПРОИЗВОДСТВА | 2007 |
|
RU2423755C2 |
Изобретение относится к составам покрытий полупроводниковых материалов и решает задачу усиления электролюминесценции полупроводников на длине волны 450 нм. Прозрачный проводящий оксид содержит слой оксида цинка с максимальной толщиной 200 нм, легированный ионами алюминия в концентрации от 1 до 3 молярных процентов и слои наночастиц серебра размерами 30-40 нм и максимальной концентрацией 1,25⋅1016 на см3. Изобретение обеспечивает усиление электролюминесценции полупроводников, излучающих на длине волны 450 нм.
Прозрачный проводящий оксид, содержащий слой оксида цинка и слои наночастиц серебра, отличающийся тем, что оксид цинка легирован ионами алюминия в концентрации от 1 до 3 молярных процентов, наночастицы серебра имеют размеры 30-40 нм и максимальную концентрацию 1,25⋅1016 на см3, а максимальная толщина слоя ZnO составляет 200 нм.
US 2010203454 A1, 12.08.2010 | |||
Н.М.ЛЯДОВ и др | |||
"Структура и оптические свойства ZnO с наночастицами серебра", Физика и техника полупроводников, вып.1, т.50, 2016 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМООБРАБОТАННОГО ПОКРЫТОГО ИЗДЕЛИЯ С ПРОЗРАЧНЫМ ПОКРЫТИЕМ ИЗ ПРОВОДЯЩЕГО ОКСИДА (ППО) ДЛЯ ИСПОЛЬЗОВАНИЯ В ПОЛУПРОВОДНИКОВОМ УСТРОЙСТВЕ | 2007 |
|
RU2436743C2 |
Просеивающий аппарат | 1929 |
|
SU21647A1 |
US 2013044499 A1, 21.02.2013. |
Авторы
Даты
2018-10-30—Публикация
2017-12-27—Подача