МАХОВИК ПЕРЕМЕННОГО МОМЕНТА ИНЕРЦИИ Российский патент 2018 года по МПК F16F15/31 

Описание патента на изобретение RU2671435C1

Изобретение относится к машиностроению, а именно, к инерционным аккумуляторам энергии.

Известна конструкция маховика переменного момента инерции, содержащего корпус с внутренней камерой, заполненной подвижной средой (RU, №2175085, опубл. 20.10.2001)

В периферийной части камеры размещено капиллярно-пористое вещество. Устройство нагрева и устройство охлаждения соприкасаются с подвижной средой и капиллярно-пористым веществом. Обеспечивается расширение эксплуатационных свойств за счет возможности регулирования момента инерции путем изменения расстояния между осью вращения и центром масс независимо от скорости вращения маховика. К недостаткам этого маховика относится необходимость использования специфического капиллярно-пористого вещества и устройства нагрева и охлаждения. Это приводит к сложности реализации, а также большим временным задержкам при необходимости изменения момента инерции.

Наиболее близким по технической реализации является маховик с переменным моментом инерции (RU, №1615439, опубл. 23.12.90), В конструкции маховика предусмотрен пустотелый барабан с камерой для жидкости, соединенный с валом с возможностью совместного вращения. Внутри камеры установлены радиальные перегородки. Жидкость из резервуара с помощью шнека, закрепленного на валу маховика, подается в камеру. По мере раскручивания маховика его масса увеличивается за счет нагнетания жидкости в камеру. Этот маховик не позволяет уменьшать его момент инерции без уменьшения его скорости вращения, что является его недостатком.

Технической задачей изобретения является обеспечение возможности увеличения и уменьшения момента инерции маховика, не требующее изменения скорости его вращения, а также повышение точности регулирования его момента инерции.

Техническим результатом изобретения является плавное регулирование момента инерции маховика, не требующее изменения скорости его вращения, простота управления и линейность зависимости изменения момента инерции от управляющего воздействия.

Решение технической задачи достигается тем, что в известном маховике переменного момента инерции, содержащего внешнюю камеру цилиндрической формы, внутреннюю цилиндрическую камеру, соосную с внешней и расположенную внутри нее, радиальные перегородки, согласно изобретению, внешняя камера жестко закреплена на двух полуосях, внутренняя камера выполнена в виде цилиндра с цилиндрическим поршнем внутри него, установленного с возможностью перемещения вдоль оси цилиндра с помощью штока, между внутренней и внешней камерами расположен кольцеобразный поршень, с возможностью перемещения вдоль стенок внутренней и внешней камер из среднего положения в верхнее, при этом полости, расположенные под цилиндрическим и кольцеобразным поршнем, гидравлически связаны между собой и заполнены жидкостью, полости над поршнями сообщены между собой и заполнены воздухом, под кольцеобразным поршнем расположено несколько пар радиальных перегородок, причем часть из них закреплены на днище кольцеобразного поршня и перемещаются вместе с ним, другие закреплены между цилиндрическими поверхностями внутренней и внешней камер.

Получение технического результата достигается как перемещением жидкости из центральной области маховика к его периферийной области, так и обратным перемещением жидкости из периферийной области в центральную, что приводит соответственно к управляемому увеличению, или к уменьшению момента инерции; при этом совместное вращение с одинаковой угловой скоростью камеры и жидкости, находящейся в полости под кольцеобразным поршнем, обеспечивают несколько пар радиально расположенных вертикальных перегородок, одни из которых закреплены на днище поршня и перемещаются вместе с ним, другие закреплены между цилиндрическими поверхностями камеры и цилиндра.

Сущность изобретения поясняется рисунками 1, 2 и 3. Маховик переменного момента инерции (фиг. 1) содержит две полуоси 1 и 2, на которых жестко закреплена внешняя камера цилиндрической формы 3. Внутренняя цилиндрическая камера 4 соосна с внешней камерой 3 и установлена с возможностью одновременного вращения с ней. Внутри цилиндрической камеры 4 расположен поршень 5, который может перемещаться вдоль оси маховика из верхнего положения (фиг. 1) в нижнее положение с помощью штока 6, жестко скрепленного с ним. Шток 6 проходит через цилиндрическое отверстие в полуоси 1, что позволяет организовать его линейное перемещение совместно с поршнем 5 вдоль оси маховика. Между цилиндрической поверхностью внешней камеры 3 и цилиндрической поверхностью внутренней камеры 4 расположен кольцеобразный поршень 7, который может перемещаться вдоль стенок коаксиальных цилиндрических поверхностей. Цилиндрическая полость А, расположенная под поршнем 5, и кольцеобразная полость Б, расположенная под кольцеобразным поршнем 7, заполнены рабочим телом (жидкостью). Полости А и Б соединены между собой через отверстия 8, имеющиеся в нижней части внутренней цилиндрической камеры 4. Цилиндрическая полость Г (фиг. 2), расположенная над поршнем 5, и кольцеобразная полость В, расположенная над кольцеобразным поршнем 7, заполнены воздухом. Полости Г и В соединены между собой через отверстия 9, имеющиеся в верхней части внутренней цилиндрической камеры 4.

Минимальный момент инерции маховика соответствует верхнему положению поршня 5 и расположению кольцеобразного поршня 7, при котором объем полости Б равен объему полости В, как показано на фиг. 1.

При перемещении поршня 5 из верхнего в нижнее положение жидкость из полости А перемещается в полость Б, что приводит к перемещению поршня 7 в верхнее положение. Это приводит к увеличению момента инерции в силу того, что жидкость из центральной части маховика перемещается к его внешней поверхности. На фиг. 2 показано промежуточное положение поршней. При перемещении поршня 7 в верхнее положение воздух, расположенный над кольцеобразным поршнем 7, вытесняется из полости В через отверстия 9 цилиндра 4 в полость Г. Максимальный момент инерции маховика достигается при верхнем положении поршня 7.

При перемещении поршня 5 из нижнего положения в верхнее, жидкость из полости Б перемещается в полость А, а воздух, расположенный над поршнем 5, вытесняется через отверстия 9 цилиндра 4 в полость В, что приводит к перемещению кольцеобразного поршня 7 из верхнего положения в среднее. Это приводит к уменьшению момента инерции в силу того, что жидкость из внешней области Б маховика перемещается в его центральную область Л.

Совместное вращение с одинаковой угловой скоростью внешней камеры 3 и жидкости, находящейся в полости Б под кольцеобразным поршнем 7, обеспечивают несколько пар радиально расположенных вертикальных перегородок 10 и 11 (фиг. 3). Перегородки 10 жестко закреплены между внутренней стенкой камеры 3 и наружной стенкой камеры 4. Эти перегородки располагаются от места нахождения нижней поверхности кольцеобразного поршня 7, соответствующего минимальному моменту инерции маховика, до внутренней поверхности дна камеры 3.

Перегородки 11 жестко закреплены на нижней поверхности кольцеобразного поршня 7 и перемещаются вместе с ним. Перегородки 11 перемещаются в пазах, образуемых перегородками 10 и выступами 12 (фиг. 3). Выступы 12 жестко закреплены на внутренней поверхности камеры 3 и внешней поверхности камеры 4. Высота перегородки 11, жестко соединенной с поршнем 7, соответствует высоте перегородки 10, жестко соединенной с камерой 3 и камерой 4. Это обеспечивает перекрытие кольцеобразной камеры Б вертикальными перегородками 10 и 11 при любом положении кольцеобразного поршня 7.

Предлагаемое техническое решение может быть использовано в системах управления гидроагрегатов при переходных процессах и аварийных режимах, которые могут возникать при резком сбросе нагрузки большой суммарной мощности, что характерно для малых ГЭС. В последнем случае маховик, сопряженный с гидроагрегатом, создает дополнительный тормозящий момент для гидроагрегата, предотвращая его неуправляемый разгон. Это реализуется за счет управляющих воздействий, приводящих к увеличению момента инерции маховика.

Использование такого маховика, также, позволяет:

- осуществлять управляемое демпфирование случайных возмущений, связанных с нестационарностью гидропотока;

- запасать механическую энергию в период, предшествующий ожидаемому увеличению электрической нагрузки, для предотвращения аварийного снижения оборотов гидроагрегата, связанного с резким набором нагрузки большой суммарной мощности, заранее увеличивая момент инерции вращающегося маховика.

Кроме того, подобное устройство может найти применение в ветроэнергетике.

Похожие патенты RU2671435C1

название год авторы номер документа
Маховик переменного момента инерции 2018
  • Платонов Александр Сергеевич
  • Домбровский Владислав Владиславович
  • Фотькин Сергей Борисович
RU2689051C1
МАХОВИК ПЕРЕМЕННОГО МОМЕНТА ИНЕРЦИИ 2018
  • Платонов Александр Сергеевич
  • Фотькин Сергей Борисович
  • Домбровский Владислав Владиславович
RU2709080C1
РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2004
  • Боев Игорь Васильевич
RU2275507C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1992
  • Спиряков Геннадий Николаевич
RU2007598C1
МАХОВИК С ЛЕГКИМ ПУСКОМ 2006
  • Киселёв Александр Валерьевич
RU2327910C1
УСТРОЙСТВО ДЛЯ ПРОХОДКИ СКВАЖИН В ГРУНТЕ 1990
  • Баховец Б.А.
  • Кованько В.В.
  • Лелявский В.В.
  • Семенюк М.А.
RU2026478C1
Пресс для сеносоломистых материалов 1987
  • Фомин Леонид Устинович
SU1456052A1
ПРИСПОСОБЛЕНИЕ ДЛЯ УСПОКОЕНИЯ КРУТИЛЬНЫХ КОЛЕБАНИЙ ВАЛА 1929
  • Гуго Юнкерс
SU38560A1
РЕАКТИВНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2003
  • Корнилов В.Д.
RU2238416C2
Вагон-хоппер 1987
  • Кашеваров Юрий Борисович
SU1650501A1

Иллюстрации к изобретению RU 2 671 435 C1

Реферат патента 2018 года МАХОВИК ПЕРЕМЕННОГО МОМЕНТА ИНЕРЦИИ

Изобретение относится к области машиностроения. Маховик переменного момента инерции содержит две полуоси (1, 2), на которых жестко закреплена внешняя камера цилиндрической формы (3). Внутри внешней камеры жестко закреплена коаксиально расположенная внутренняя камера (4). Внутри внутренней камеры расположен поршень (5) c возможностью перемещения вдоль оси маховика посредством штока (6). Между цилиндрической поверхностью внешней камеры и цилиндрической поверхностью внутренней камеры расположен кольцеобразный поршень (7), который выполнен с возможностью перемещения вдоль стенок коаксиальных цилиндрических поверхностей. Полости, расположенные под цилиндрическим и кольцеобразным поршнями, гидравлически связаны между собой и заполнены жидкостью. Полости над поршнями сообщены между собой и заполнены воздухом. Несколько пар радиальных перегородок расположены под кольцеобразным поршнем. Некоторые радиальные перегородки закреплены на днище кольцеобразного поршня и перемещаются вместе с ним. Достигается плавность регулирования момента инерции маховика и упрощение управления. 3 ил.

Формула изобретения RU 2 671 435 C1

Маховик переменного момента инерции, содержащий внешнюю камеру цилиндрической формы, внутреннюю цилиндрическую камеру, соосную с внешней и расположенную внутри нее, радиальные перегородки, отличающийся тем, что внешняя камера жестко закреплена на двух полуосях, внутренняя камера выполнена в виде цилиндра с цилиндрическим поршнем внутри него, установленного с возможностью перемещения вдоль оси цилиндра с помощью штока, между внутренней и внешней камерами расположен кольцеобразный поршень с возможностью перемещения вдоль стенок внутренней и внешней камер из среднего положения в верхнее, при этом полости, расположенные под цилиндрическим и кольцеобразным поршнями, гидравлически связаны между собой и заполнены жидкостью, полости над поршнями сообщены между собой и заполнены воздухом, под кольцеобразным поршнем расположено несколько пар радиальных перегородок, причем часть из них закреплены на днище кольцеобразного поршня и перемещаются вместе с ним, другие закреплены между цилиндрическими поверхностями внутренней и внешней камер.

Документы, цитированные в отчете о поиске Патент 2018 года RU2671435C1

Маховик с переменным моментом инерции 1988
  • Иванов Владимир Григорьевич
SU1615439A1
US 3248967 A, 03.05.1966
СПОСОБ И УСТРОЙСТВО ДЛЯ ИСПРАВЛЕНИЯ ОШИБОК В СИСТЕМЕ СВЯЗИ С МНОЖЕСТВОМ ПОДНЕСУЩИХ, ИСПОЛЬЗУЮЩЕЙ МНОЖЕСТВО АНТЕНН 2007
  • Ли Моон Ил
  • Ихм Бин Чул
  • Чун Дзин Йоунг
RU2404515C2
Способ работы двухступенчатой абсорбционной холодильной установки непрерывного действия 1934
  • Блиер Б.М.
SU42107A1

RU 2 671 435 C1

Авторы

Платонов Александр Сергеевич

Фотькин Сергей Борисович

Домбровский Владислав Владиславович

Даты

2018-10-31Публикация

2017-12-27Подача