Способ оценки опасности биокоррозионных процессов подземных стальных сооружений Российский патент 2018 года по МПК G01N17/00 G01N33/20 

Описание патента на изобретение RU2672193C1

Изобретение относится к области трубопроводного транспорта, в частности к исследованиям биокоррозии в лабораторных и промысловых условиях на наружной поверхности трубопроводов и оценки биокоррозионной агрессивности почвогрунтов в зонах прокладки магистральных нефтепроводов и нефтепродуктопроводов (МНПП), учитывающего наиболее значимые факторы внешней среды, влияющие на формирование микробиоценоза.

Данные отечественных и зарубежных исследователей показывают, что до 50% случаев коррозионных повреждений при эксплуатации трубопроводов в условиях грунта может быть отнесено за счет жизнедеятельности почвенных микроорганизмов. Повреждения материала, вызванные микроорганизмами, называются биоповреждениями или биокоррозией.

На данный момент сложная цепочка взаимодействия бактерий почвенного микробиоценоза не изучена в достаточной степени, чтобы классифицировать механизмы биокоррозии. Для исследования данных процессов в реальных условиях возникает необходимость применения специального оборудования для контроля локальной и общей коррозии в грунтах.

Разрушению металла труб по ведущему механизму коррозии сопутствуют те или иные осложняющие факторы или их суммарное воздействие. Осложняющие факторы могут приводить к значительному ускорению коррозионных процессов. Кроме того, основной причиной коррозионных разрушений могут являться одновременно несколько механизмов в равной степени.

Известен способ испытания сталей на стойкость к микробиологической коррозии, который предусматривает отбор проб с количественным определением четырех групп коррозионно - опасных бактерий: сульфат - восстанавливающих (СВБ), тионовых (ТБ), железоокисляющих (ЖБ) и углерод-окисляющих бактерий (УОБ) [патент RU 2432565 С1, дата публикация 27.08.2010].

Однако данный метод разработан для определения коррозионной агрессивности микроорганизмов различных классов в промысловых жидкостях, т.е. относится к исследованиям внутренней коррозии. Таким образом, недостатками данного способа являются исследование процесса только внутренней коррозии, отсутствие сведений о возможности прогнозирования развития коррозионных процессов, отсутствие метода исследования биокоррозии на наружной поверхности трубопроводов.

Техническая проблема, на решение которой направлено заявляемое изобретение, состоит в создании способа оценки биокоррозионной агрессивности почвы (грунтов) в зонах прокладки магистральных нефтепроводов и нефтепродуктопроводов (МНПП), учитывающего наиболее значимые факторы внешней среды, влияющие на формирование микробиоценозов - состава и структуры почвы, биозараженности, рН почвы, электросопротивления и окислительно - восстановительный потенциал грунта ОВП.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в обеспечении оценки биокоррозионной агрессивности грунтов в зоне прокладки подземных трубопроводов на основе комплексного анализа биозараженности грунта и его минерального состава.

Технический результат достигается за счет того, что способ оценки опасности биокоррозионных процессов подземных стальных сооружений характеризуется тем, что определяют влажность в почве, минеральный состав почвы, удельное электросопротивление грунта (УЭС), окислительно - восстановительный потенциал грунта (ОВП), рН почвы, общее количество аэробных бактерий (АБ), общее количество микрогрибов (микромицетов) (ГР), отдельные классы микроорганизмов - сульфатвосстанавливающих (СВБ), железобактерий (ЖБ), после чего рассчитывается коэффициент агрессивности грунта (БАГ) по формуле:

КБАГМБЭХЭС,

где КМ - коэффициент, учитывающий минеральный состав грунта, который рассчитывается по формуле:

KM=KSO4*KCO3*KCl*KS*KFe,

где KSO4 - коэффициент, учитывающий содержание ионов сульфата; KCO3 - коэффициент, учитывающий содержание ионов карбоната; KCl - коэффициент, учитывающий содержание ионов хлора; KS - коэффициент, учитывающий содержание сульфидов; KFe - коэффициент, учитывающий содержание железа

где КБ - коэффициент, учитывающий содержание основных групп микроорганизмов, который рассчитывается по формуле:

КБСВБЖБАБГР,

где КСВБ - коэффициент, учитывающий содержание сульфат - восстанавливающих бактерий; КЖБ - коэффициент, учитывающий содержание железобактерий; КАБ - коэффициент, учитывающий содержание аэробных бактерий; КГР - коэффициент, учитывающий содержание микрогрибов (микромицетов).

где КЭХ - коэффициент, учитывающий электрохимические показатели грунта, который рассчитывается по формуле:

КЭХрНОВПВ,

где КрН - коэффициент, учитывающий влияние показателя рН; КОВП - коэффициент, учитывающий величину ОВП; КВ - коэффициент, учитывающий величину влажности почвы:

где КЭС - коэффициент, учитывающий величину удельного электросопротивления грунта,

при этом каждому из коэффициентов КМ, КБ, КЭХ, КЭС, KSO4, KCO3, KCl, KS, KFe, КСВБ, КЖБ, КАБ, КГР, КрН, КОВП, КВ в зависимости от величины измеренных показателей присваивается значение от 1 до n, а опасность биокоррозионной агрессивности грунта определяют по величине коэффициента КБАГ.

По результатам всех экспериментов составляется итоговая таблица исследований, и на основе рейтинговой системы определяется уровень коррозионной агрессивности грунтов на различных объектах (участках).

Способ оценки опасности биокоррозионных процессов подземных стальных сооружений включает в себя исследование состава почвы следующими методами:

1. Химическими методами исследования, при которых определяют влажности в почве по ГОСТ 28268-89 «ПОЧВЫ. Методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений»; минеральный состав почвы, причем особое внимание уделяется содержанию сульфатов по ГОСТ 26426-85, карбонатов по ГОСТ 26424-85, хлоридов по ГОСТ 26425-85, суммарного содержания двух- и трехвалентного железа ГОСТ 27395-87 «Почвы. Метод определения подвижных соединений двух- и трехвалентного железа по Веригиной-Аринушкиной» и сульфидов в почвенных образцах.

Прямое определение сульфидов может быть осуществлено на лабораторной установке (на чертежах не показана), включающей штатив, магнитную мешалку с подогревом, коническую или круглую плоскодонную колбу объемом 250 мл, перемешивающее устройство, воздушный капилляр, газоотводную трубку, индикаторную трубку на H2S. В колбу помещают навеску грунта определенной массы (1-5 г) и соответствующее количество 15-17% соляной кислоты (30-100 мл). При постепенном нагревании (до 80°C) и интенсивном перемешивании суспензии выделяется газообразный сероводород (H2S), количество которого можно измерить при помощи индикаторных трубок (если одной трубки недостаточно, последовательно устанавливаются вторая, третья и т.д.).

2. Электрохимическими методами исследования, при которых определяют удельное электросопротивление грунта (УЭС) и рН по ГОСТ 26423-85 «ПОЧВЫ. Методы определения удельной электрической проводимости, рН и плотного остатка водной вытяжки», окислительно - восстановительного потенциала (ОВП) по «Руководству по эксплуатации Мультитест ИПЛ НПКД.421598.100 РЭ».

3. Микробиологическими методами исследования, при которых определяют количество железобактерий и общее количество аэробных бактерий (АБ), КОЕ/г почвы по ГОСТ 10444.15-94; общее количество микрогрибов (микромицетов); отдельные классы микроорганизмов - сульфатвосстанавливающих (СВБ), железобактерий (ЖБ) и т.д., КОЕ/г почвы по РД 39-3-273-83 «Методика контроля микробиологической зараженности нефтепромысловых вод и оценка защитного и бактерицидного действия реагентов».

Далее рассчитывают коэффициент биологической агрессивности грунта (БАГ), рассчитывается по формуле:

КБАГМБЭХЭС,

где КМ - коэффициент, учитывающий минеральный состав грунта:

KM=KSO4*KCO3*KCl*KS*KFe;

KSO4 - коэффициент, учитывающий содержание ионов сульфата;

KCO3 - коэффициент, учитывающий содержание ионов карбоната;

KCl - коэффициент, учитывающий содержание ионов хлора;

KS - коэффициент, учитывающий содержание сульфидов;

KFe - коэффициент, учитывающий содержание железа.

В зависимости от величины измеренных показателей коэффициентам KSO4, KCO3, KCl, KS, KFe присваиваются значение от 1 до n в соответствии с Таблицей 1.

Где КБ - коэффициент, учитывающий содержание основных групп микроорганизмов:

КБСВБЖБАБГР;

КСВБ - коэффициент, учитывающий содержание сульфат - восстанавливающих бактерий;

КЖБ - коэффициент, учитывающий содержание железобактерий;

КАБ - коэффициент, учитывающий содержание аэробных бактерий;

КГР - коэффициент, учитывающий содержание микрогрибов (микромицетов).

В зависимости от величины измеренных показателей коэффициентам КСВБ, КЖБ, КАБ, КГР присваиваются значение от 1 до n в соответствии с Таблицей 2.

Где КЭХ - коэффициент, учитывающий электрохимические показатели грунта:

КЭХрНОВПВ;

КрН - коэффициент, учитывающий влияние показателя рН:

КОВП - коэффициент, учитывающий величину ОВП:

КВ - коэффициент, учитывающий величину влажности почвы:

В зависимости от величины измеренных показателей коэффициентам КрН, КОВП, КВ присваиваются значение от 1 до n в соответствии с Таблицей 3.

Где КЭС - коэффициент, учитывающий величину удельного электросопротивления грунта.

В зависимости от величины измеренных показателей коэффициенту КЭС присваивается значение от 1 до n в соответствии с Таблицей 4.

Оценка опасности биокоррозионных процессов подземных стальных сооружений осуществляется по величине КБАГ в соответствии с Таблицей 5.

Пример расчета коэффициента биологической агрессивности грунта КБАГ на конкретном участке трубопровода в соответствии с заявляемым способом представлен в Таблице 6.

Похожие патенты RU2672193C1

название год авторы номер документа
СПОСОБ ОЦЕНКИ ТРОМБОЛИТИЧЕСКОГО ПОТЕНЦИАЛА МИКРОМИЦЕТОВ 2020
  • Фокичев Николай Сергеевич
  • Осмоловский Александр Андреевич
  • Лукьянова Анна Александровна
  • Корниенко Елена Игоревна
  • Налобин Денис Сергеевич
RU2788697C2
Раствор для очистки замазученной древесно-кустарниковой растительности 2021
  • Николаева Арина Валерьевна
  • Дунаева Анастасия Сергеевна
  • Дубовик Дмитрий Сергеевич
  • Тараканов Вячеслав Вениаминович
  • Хомутова Ксения Геннадьевна
RU2780125C1
СПОСОБ ВЫЯВЛЕНИЯ УЧАСТКОВ ТРУБОПРОВОДОВ, ПРЕДРАСПОЛОЖЕННЫХ К ВНУТРЕННЕЙ КОРРОЗИИ 2008
  • Петров Николай Георгиевич
  • Попенко Александр Николаевич
  • Прохожаев Олег Тимофеевич
  • Кочубей Алексей Дмитриевич
  • Рябич Надежда Константиновна
RU2360230C1
Способ оценки коррозионного состояния участка подземного трубопровода по данным коррозионных обследований и внутритрубной диагностики 2017
  • Копысов Андрей Федорович
  • Корзинин Вадим Юрьевич
  • Гончаров Андрей Викторович
  • Валюшок Андрей Валерьевич
  • Замятин Антон Владимирович
RU2662466C1
Битумно-полимерная грунтовка 2017
  • Арабей Андрей Борисович
  • Игошин Руслан Вячеславович
  • Сусликов Сергей Петрович
  • Крюков Алексей Вячеславович
  • Фахретдинов Сергей Баянович
  • Ряховских Илья Викторович
  • Маршаков Андрей Игоревич
  • Макаров Сергей Николаевич
  • Газизов Марат Хамидович
  • Кирсанов Валерий Юрьевич
  • Колтаков Сергей Михайлович
RU2663134C1
СПОСОБ КАЧЕСТВЕННОЙ ОЦЕНКИ БИОКОРРОЗИОННЫХ ПОРАЖЕНИЙ ТОНКОСТЕННЫХ ГЕРМЕТИЧНЫХ ОБОЛОЧЕК ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ ПРИ ЭКСПЛУАТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И СУСПЕНЗИЯ СПОРОВЫХ МАТЕРИАЛОВ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Плотников Андрей Дмитриевич
  • Борисов Владимир Афанасьевич
  • Алехова Татьяна Анатольевна
  • Загустина Наталия Алексеевна
  • Новожилова Татьяна Юрьевна
  • Шкловер Владимир Яковлевич
RU2486250C2
СПОСОБ ИСПЫТАНИЯ ТРУБНЫХ СТАЛЕЙ НА КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ 2015
  • Арабей Андрей Борисович
  • Ряховских Илья Викторович
  • Есиев Таймураз Сулейманович
  • Мельникова Анна Валерьевна
RU2582911C1
Способ рекультивации нарушенных земель 2016
  • Листов Евгений Леонидович
  • Пыстина Наталья Борисовна
  • Хохлачев Николай Сергеевич
  • Никишова Анна Сергеевна
  • Лужков Виктор Александрович
  • Ишков Александр Гаврилович
RU2630237C1
БИОПРЕПАРАТ ДЛЯ ОЧИСТКИ ОКРУЖАЮЩЕЙ СРЕДЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ 2002
  • Мошкин Андрей Германович
  • Нугманова Татьяна Алексеевна
  • Молокоедов Михаил Михайлович
  • Алексеева Мария Георгиевна
  • Никулина Ольга Леонидовна
RU2302303C2
Устройство для улавливания нефти, нефтепродуктов и взвешенных веществ в производственно-дождевых сточных водах 2021
  • Замалаев Сергей Николаевич
  • Хованов Георгий Петрович
  • Нехитров Константин Юрьевич
  • Кузмин Роман Евгеньевич
  • Шубарт Андрей Иванович
  • Афлятунов Урал Римович
  • Зайцев Евгений Зиновьевич
  • Виниченко Антон Семенович
  • Мышкин Евгений Сергеевич
  • Ботаногов Антон Александрович
RU2772482C1

Реферат патента 2018 года Способ оценки опасности биокоррозионных процессов подземных стальных сооружений

Изобретение относится к области трубопроводного транспорта, в частности к исследованиям биокоррозии в лабораторных и промысловых условиях на наружной поверхности трубопроводов и оценки биокоррозионной агрессивности почвогрунтов в зонах прокладки магистральных нефтепроводов и нефтепродуктопроводов (МНПП), учитывающего наиболее значимые факторы внешней среды, влияющие на формирование микробиоценоза. Способ оценки опасности биокоррозионных процессов подземных стальных сооружений характеризуется тем, что определяют влажность в почве, минеральный состав почвы, удельное электросопротивление грунта (УЭС), окислительно - восстановительный потенциал грунта (ОВП), рН почвы, общее количество аэробных бактерий (АБ), общее количество микрогрибов (микромицетов) (ГР), отдельные классы микроорганизмов - сульфатвосстанавливающих (СВБ), железобактерий бактерий (ЖБ), после чего рассчитывается коэффициент агрессивности грунта (БАГ) по формуле:

КБАГМБЭХЭС,

где КМ - коэффициент, учитывающий минеральный состав грунта, который рассчитывается по формуле:

KM=KSO4*KCO3*KCl*KS*KFe,

где KSO4 - коэффициент, учитывающий содержание ионов сульфата; KCO3 - коэффициент, учитывающий содержание ионов карбоната; KCl - коэффициент, учитывающий содержание ионов хлора; KS - коэффициент, учитывающий содержание сульфидов; KFe - коэффициент, учитывающий содержание железа,

где КБ - коэффициент, учитывающий содержание основных групп микроорганизмов, который рассчитывается по формуле:

КБСВБЖБАБГР,

где КСВБ -_ коэффициент, учитывающий содержание сульфатвосстанавливающих бактерий; КЖБ - коэффициент, учитывающий содержание железобактерий; КАБ - коэффициент, учитывающий содержание аэробных бактерий; КГР - коэффициент, учитывающий содержание микрогрибов (микромицетов),

где КЭХ - коэффициент, учитывающий электрохимические показатели грунта, который рассчитывается по формуле:

КЭХрНОВПВ,

где КрН - коэффициент, учитывающий влияние показателя рН; КОВП - коэффициент, учитывающий величину ОВП; КВ - коэффициент, учитывающий величину влажности почвы:

где КЭС - коэффициент, учитывающий величину удельного электросопротивления грунта,

при этом каждому из коэффициентов КМ, КБ, КЭХ, КЭС, KSO4, КСО3, KCl, KS, KFe, КСВБ, КЖБ, КАБ, КГР, KpH, КОВП, КВ в зависимости от величины измеренных показателей присваивается значение от 1 до n, а опасность биокоррозионной агрессивности грунта определяют по величине коэффициента КБАГ. Технический результат - обеспечение оценки биокоррозионной агрессивности грунтов в зоне прокладки подземных трубопроводов на основе комплексного анализа биозараженности грунта и его минерального состава. 6 табл.

Формула изобретения RU 2 672 193 C1

Способ оценки опасности биокоррозионных процессов подземных стальных сооружений, характеризующий тем, что определяют влажность в почве, минеральный состав почвы, удельное электросопротивление грунта (УЭС), окислительно-восстановительный потенциал грунта (ОВП), рН почвы, общее количество аэробных бактерий (АБ), общее количество микрогрибов (микромицетов) (ГР), отдельные классы микроорганизмов -сульфатвосстанавливающих (СВБ), железобактерий бактерий (ЖБ), после чего рассчитывается коэффициент агрессивности грунта (БАГ) по формуле:

КБАГМБЭХЭС,

где КМ - коэффициент, учитывающий минеральный состав грунта, который рассчитывается по формуле:

КМSO4CO3Сl*KS*KFe,

где КSO4 - коэффициент, учитывающий содержание ионов сульфата; КCO3 - коэффициент, учитывающий содержание ионов карбоната; КСl - коэффициент, учитывающий содержание ионов хлора; KS - коэффициент, учитывающий содержание сульфидов; KFe - коэффициент, учитывающий содержание железа,

где КБ - коэффициент, учитывающий содержание основных групп микроорганизмов, который рассчитывается по формуле:

КБСВБЖБАБГР,

где КСВБ - коэффициент, учитывающий содержание сульфатвосстанавливающих бактерий; КЖБ - коэффициент, учитывающий содержание железобактерий; КАБ - коэффициент, учитывающий содержание аэробных бактерий; КГР - коэффициент, учитывающий содержание микрогрибов (микромицетов),

где КЭХ - коэффициент, учитывающий электрохимические показатели грунта, который рассчитывается по формуле:

КЭХpHОВПВ,

где КpH - коэффициент, учитывающий влияние показателя рН; КОВП - коэффициент, учитывающий величину ОВП; КВ - коэффициент, учитывающий величину влажности почвы,

где КЭС - коэффициент, учитывающий величину удельного электросопротивления грунта,

при этом каждому из коэффициентов КМ, КБ, КЭХ, КЭС, KSO4, КCO3, КCl, KS, KFe, КСВБ, КЖБ, КАБ, КГР, КрН, КОВП, КВ в зависимости от величины измеренных показателей присваивается значение от 1 до n, а опасность биокоррозионной агрессивности грунта определяют по величине коэффициента КБАГ.

Документы, цитированные в отчете о поиске Патент 2018 года RU2672193C1

Кушнаренко В.М., Чирков Ю.А, Репях В.С., Ставишенко В.Г., "БИОКОРРОЗИЯ СТАЛЬНЫХ КОНСТРУКЦИЙ", ВЕСТНИК ОГУ, номер 6 (142), июнь 2012, с.160-164
Грибанькова А.А
Мямина М.А
Белоглазов С.М., "МИКРОБИОЛОГИЧЕСКАЯ КОРРОЗИЯ МЯГКОЙ СТАЛИ В ВОДНО-СОЛЕВЫХ СРЕДАХ, СОДЕРЖАЩИХ СУЛЬФАТРЕДУЦИРУЮЩИЕ БАКТЕРИИ", Вестник Балтийского федерального университета им
И
Канта, 2011, Вып
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1
СПОСОБ ИСПЫТАНИЯ СТАЛЕЙ НА СТОЙКОСТЬ К МИКРОБИОЛОГИЧЕСКОЙ КОРРОЗИИ 2010
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Сачкова Елена Николаевна
  • Тетюева Тамара Викторовна
  • Борисенкова Екатерина Александровна
RU2432565C1
SU 1182887 A1, 27.03.1999
СПОСОБ СРАВНИТЕЛЬНОЙ ОЦЕНКИ СТОЙКОСТИ СТАЛЕЙ К БИОЛОГИЧЕСКОЙ КОРРОЗИИ 2009
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Сачкова Елена Николаевна
  • Тетюева Тамара Викторовна
  • Титлова Ольга Ивановна
RU2396544C1
JP 11299497 A, 02.11.1999
FR 2862757 A1, 27.05.2005.

RU 2 672 193 C1

Авторы

Копысов Андрей Федорович

Корзинин Вадим Юрьевич

Гончаров Андрей Викторович

Худякова Лариса Петровна

Шестаков Александр Анатольевич

Широков Алексей Валерьевич

Даты

2018-11-12Публикация

2017-10-16Подача