ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ КАЧЕНИЯ И СКОЛЬЖЕНИЯ Российский патент 2018 года по МПК C10M169/02 C10M161/00 C10M117/00 C10M125/02 C10M143/06 C10N30/06 

Описание патента на изобретение RU2672266C1

Изобретение относится к пластичным смазкам, предназначенным для применения в тяжелонагруженных узлах трения качения и скольжения в широком диапазоне нагрузок и скоростей, в интервале температур от минус 60 до плюс 250°С промышленного оборудования, современных транспортных средств, промышленного, строительного и судового оборудования.

В настоящее время значительно возросли требования по работоспособности, предъявляемые к пластичным смазкам для подшипников качения и скольжения. Смазки должны обеспечить длительный ресурс работы подшипников при нагрузках до 150 МПа. Для обеспечения длительного ресурса работы подшипников смазки должны обладать хорошими смазочными, антифрикционными и антикоррозионными свойствами, специфическими реологическими свойствами, обеспечивающими хорошую подпитку узлов трения и минимальные энергетические затраты на трение.

Известны пластичные смазки для узлов трения скольжения, соответствующие спецификациям США MIL-G-81827 и MIL-G-21164 С, Mobilgrease-29, фирмы "Mobil oil", Aeroshell-17, фирмы "Shell oil", Isoflex PDL 300 А, фирмы "Kluber Lubr" и др. (B.B. Синицын. Пластичные смазки за рубежом. М., Химия, 1983). Две первые смазки содержат загущенные гекторитовой глиной углеводородные синтетические масла, с добавкой не менее 5% дисульфида молибдена. Смазка Isoflex PDL 300 А является мыльной (литиевое или кальциевое мыло), также на синтетическом углеводородном масле.

У всех указанных смазок ресурс работы в узле трения при одноразовой заправке довольно низок, т.е. они требуют систематической подпитки узла трения.

Известна многоцелевая пластичная смазка Литол-24 (RU 2202601, 2003, ГОСТ 21150-87). В состав смазки Литол-24 входит загуститель -литиевое мыло 12-оксистеариновой кислоты - 13%, антиокислительная присадка дифениламин - 0,5% или неозон-Д - 0,7%, вязкостная присадка полиизобутилен П-20 (М. м. 15000 25000) - 4%, дисперсионная среда -смесь масел веретенного АУ и индустриального И-50А (1:3) или остаточных или дистиллятных масел западно-сибирских нефтей - до 100.

Недостатками указанной смазки являются невысокая предельная температура использования (до 130°С), а также низкие противоизносные и противозадирные свойства при высоких удельных нагрузках.

Так, например, известна смазка Консталин-1, включающая масло и добавку (см. В.В. Синицын, Справочник, «Пластичные смазки в СССР», Москва, «Химия», 1984 г., стр. 80).

В составе смеси в качестве основы используют смесь минеральных масел высокой и средней вязкости, например, индустриальное или авиационное, трансформаторное АУ, приборное МВП. В качестве загустителя в известной смазке используют Na- Са- мыла касторового масла в количестве 21% и в качестве добавки воду до 0,75%.

Смазка 1-13 предназначена для смазывания узлов трения качения и скольжения механизмов и машин, работающих при температуре от -20°С до +110°С.

Недостатками указанной смазки являются низкая температура каплепадения, а также низкие противозадирные свойства, что ограничивает ее применение в области высоких температур. Смазка изготовлена на натриевом мыле, что делает невозможным ее применение в условиях высокой влажности.

Наиболее близкой в силу изложенных причин в качестве ближайшего аналога заявленной пластичной смазки принята смазка железнодорожная Л3-ЦНИИ, ТУ 0254-013-0014820-99), в состав которой входят масло касторовое в количестве 19±2%, известь 0,5±0,1%, натр-едкий 0,5±0,1%, присадка ДФ-11 (диоктилдитиофосфат цинка) в количестве 5±0,1% и присадка дифениламин 0,7-1,0%., Масло веретенное АУ беспарафиновых нефтей или масло АУ малосернистых нефтей или масло АУ сернистых нефтей до 100%.

Недостатки состава смазки заключаются в невысокой предельной температуре использования (до 150°С) и узком температурном диапазоне применения, низких противоизносных и противозадирных свойствах, а также в пониженной коллоидной стабильности, склонности к термоупрочнению. Кроме этого реологические характеристики прототипа (предел прочности, эффективная вязкость) не соответствуют оптимальным для смазок, применяемых в узлах трения.

Изобретение относится к области создания пластичных смазок, работоспособных в узлах трения в широком диапазоне нагрузок и скоростей, в интервале температур от минус 60 до плюс 250°С.

Поставленная техническая задача достигается тем, что в состав смазки на основе смеси масел, содержащим омыляющие вещества, функциональные антиокислительную и противоизносную присадки, дополнительно введены полиизобутилен П-10, а в качестве многофункциональной присадки полимерные фосфоровольфраматы лития и натрия при следующем соотношении компонентов, мас. %:

Масло касторовое до 19±2 Известь 0,5±0,1 Натр-едкий 0,5±0,1 ДФ-11 5±0,1 Присадка дифениламин 0,7-1,0 Полиизобутилен П-10 2-5 Многофункциональная присадка 0,5-5 асло веретенное АУ до 100

Многофункциональная присадка представляет собой неорганическое соединение. В качестве таких присадок были выбраны полимерные фосфаты некоторых металлов (Na, Li.), которые могут встраивать в свою анионную структуру тетраэдрические фрагменты, содержащие как d- так и р- элементы:WO4, MoO4, и т.д. Специфика адгезионных свойств полифосфатов обусловлена способностью полимерных анионов изменять свои конформации, степень полимеризации. В процессе трения преобладающей формой аниона NaPWO6 является линейная, образующаяся из циклической: гетерофосфатные циклы, находящиеся на поверхности металла, раскрываются и преобразуются в цепочки, а, линейные цепочки фосфоровольфраматов прикрепляются к активным микрошероховатостям металлической поверхности фосфорным концом: контакт с поверхностью металла осуществляется через атомы кислорода фосфатного фрагмента, что упрочняет химическую связь фосфоровольфраматов с поверхностью трибосопряжения. Многофункциональная присадка повышает:

- антикоррозионные свойства смазки при повышенных температурах;

- противозадирные и противоизносные свойства смазки, особенно в тяжело нагруженных узлах трения, подшипников качения и скольжения.

Оптимальное содержание многофункциональной присадки определено лабораторными исследованиями, значительная эффективность ее проявляется при содержании выше 0,5 мас. ч., а выше 5 мас. ч. рост противоизносных и противозадирных свойств незначителен.

Одним из критериев работоспособности смазок, характеризующим поведение смазок при хранении и эксплуатации, выступает коллоидная стабильность смазок. Повышение коллоидной стабильности пластичных смазок путем применения вязкостных присадок в составе дисперсионных сред пластичных смазок.

В качестве вязкостной присадки используем полиизобутилен П-10 имеющий молекулярную массу по Штаудингеру 14000. Для облегчения растворимости полимера в качестве базового масла применяли остаточный компонент производства базовых масел (СТО 05742746-03-01-2010 АО «Ангарская нефтехимическая компания») с содержанием ароматических углеводородов 34 мас. % (для сравнения содержание ароматических углеводородов в маслах И-40, И-20 не превышает 24…25 мас. %), вязкостью кинематической при 100°С, равной 19 мм2/с, индексом вязкости 86. Применение полиизобутилена не снижает стабильности против окисления базовых масел и противокоррозионных свойств, улучшает противоизносные свойства масел

Для модификации пластичной смазки применяли следующую методику: смазку нагревали до температуры 120°С и добавляли к ней 3 мас. % 20%-раствора полиизобутилена с температурой 110…115°С. Смесь медленно вымешивали до однородного состояния. Затем ее быстро нагревали до температуры на 10°С выше температуры каплепадения смазки и подвергали медленному охлаждению. Для полученной смазочной композиции (СК) проводили испытания коллоидной стабильности по ГОСТ 7142, предела прочности на сдвиг по ГОСТ 7143 (метод Б), критической нагрузки по ГОСТ 9490, механической стабильности по ГОСТ 19295. Результаты испытаний приведены в таблице 1.

При введении раствора полиизобутилена снижается предел прочности на сдвиг. Снижение данного параметра при известной склонности смазки Л3-ЦНИИ к термоупрочнению косвенно свидетельствует об улучшении заполнения ею площади контакта трущихся тел (лучшему поступлению смазки в зону трения). Снижение предела прочности в результате проведенной механической обработки смазки, не приводит, как можно было ожидать, к ухудшению ее противоизносных свойств.

Исследования износных свойств разработанных СК проводилось на четырехшариковой машине трения ЧМТ-1, при нагрузке 196 Н, со скоростью вращения 1400 об/мин, в течение 1 часа по показателю «диаметр пятна износа». Существенное снижение диаметра пятна износа при исследовании на ЧМТ-1 при введении присадок свидетельствует об их способности образовывать на металлических поверхностях трибосопряжений защитные антифрикционные пленки вторичных структур, обеспечивающие смазочное действие. Результаты исследования износных свойств разработанных смазочных композиций приведены в таблице 2.

Результаты триботехнических испытаний показали уменьшение износа СК на основе пластичных смазок при введении в них полиизобутилена по сравнению с контрольными показателями. Уменьшение пятна износа составляет от 15-20% в зависимости от содержания присадки.

Полимерные фосфоровольфраматы лития, натрия, проявляют олеофильность, что является одним из условий применения этих соединений в качестве присадок. Большинство таких фосфатов хорошо растворяется в различных смазочных материалах и не разлагается в процессе их эксплуатации. Они увеличивают коррозионную стойкость стальных материалов и увеличивают несущую способность граничных слоев смазочных материалов

На четырехшариковой машине трения ЧМТ-1, при нагрузке 196 Н, со скоростью вращения 1400 об/мин, в течение 1 часа по показателю «диаметр пятна износа», что позволяет исследовать противоизносные свойства СК. Существенное снижение диаметра пятна износа при исследовании на ЧМТ-1 при введении присадок фосфоровольфраматов в пластичные смазки свидетельствует об их способности образовывать на металлических поверхностях трибосопряжений защитные антифрикционные пленки вторичных структур, обеспечивающие смазочное действие. Результаты исследования износных свойств разработанных СК приведены в таблице 3.

Результаты триботехнических испытаний показали уменьшение износа СК на основе пластичных смазок при введении в них LiPWO6 и NaPWO6 по сравнению с контрольными показателями. Уменьшение пятна износа составляет от 30-50% в зависимости от содержания присадки. Отработанные СК с введенной присадкой остаются влагостойкими, не уплотняются и не твердеют, сохраняя коррозионную стойкость на металлических поверхностях.

Похожие патенты RU2672266C1

название год авторы номер документа
СРЕДНЕТЕМПЕРАТУРНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ КАЧЕНИЯ И СКОЛЬЖЕНИЯ 2001
  • Букин Виктор Евгеньевич
  • Чередниченко Петр Георгиевич
RU2202601C2
ПЛАСТИЧНАЯ СМАЗКА (ВАРИАНТЫ) 2009
  • Нестеров Александр Викторович
  • Елисеев Леонид Сергеевич
  • Горякина Ольга Валентиновна
RU2428461C1
СМАЗКА ДЛЯ УЗЛОВ ТРЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ И СКОЛЬЖЕНИЯ 2010
  • Букин Виктор Евгениевич
RU2443765C1
Многоцелевая пластичная смазка 2019
  • Евстафьев Алексей Юрьевич
  • Колыбельский Дмитрий Сергеевич
  • Порфирьев Ярослав Владимирович
  • Шувалов Сергей Александрович
  • Ермакова Ольга Вячеславовна
RU2698463C1
Низкотемпературное смазочное масло на основе полиэтилсилоксанов 2021
  • Мотренко Петр Данилович
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Бойко Михаил Викторович
  • Колесников Игорь Владимирович
  • Сычёв Игорь Борисович
RU2770067C1
Морозостойкая смазка 2016
  • Чулков Игорь Павлович
  • Одинец Людмила Георгиевна
  • Реморов Борис Сергеевич
  • Земляная Татьяна Петровна
  • Глядяев Дмитрий Юрьевич
  • Евдокимов Игорь Анатольевич
  • Быков Сергей Александрович
  • Савинков Сергей Алексеевич
  • Федоров Игорь Евгеньевич
RU2622398C1
МОРОЗОСТОЙКАЯ ПОЛУЖИДКАЯ СМАЗКА 2021
  • Матина Ольга Сергеевна
  • Волгин Сергей Николаевич
  • Чулков Игорь Павлович
RU2766584C1
МОРОЗОСТОЙКАЯ ПОЛУЖИДКАЯ СМАЗКА 2020
  • Матина Ольга Сергеевна
  • Глядяев Дмитрий Юрьевич
  • Волгин Сергей Николаевич
  • Чулков Игорь Павлович
  • Реморов Борис Сергеевич
  • Фёдоров Игорь Евгеньевич
  • Евдокимов Игорь Анатольевич
  • Быков Сергей Александрович
RU2748988C1
ПЛАСТИЧНАЯ СМАЗКА 2014
  • Багдасаров Леонид Николаевич
  • Викулова Анна Алексеевна
  • Килякова Анастасия Юрьевна
  • Колыбельский Дмитрий Сергеевич
  • Попов Павел Станиславович
  • Порфирьев Ярослав Владимирович
  • Тонконогов Борис Петрович
  • Евстафьев Алексей Юрьевич
RU2581463C1
УНИВЕРСАЛЬНАЯ СМАЗКА ДЛЯ ПОДШИПНИКОВ КАЧЕНИЯ И СКОЛЬЖЕНИЯ 2016
  • Букин Виктор Евгеньевич
RU2635100C2

Реферат патента 2018 года ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ КАЧЕНИЯ И СКОЛЬЖЕНИЯ

Изобретение относится к составу пластичных смазок, предназначенных для применения в тяжелонагруженных узлах трения качения и скольжения в широком диапазоне нагрузок и скоростей, в интервале температур от минус 60 до плюс 250°С промышленного оборудования, современных транспортных средств, промышленного, строительного и судового оборудования. Смазка содержит, мас.%: масло касторовое 19±2, известь 0,5±0,1-0,1, натр-едкий 0,5±0,1, ДФ-11 (диоктилдитиофосфат цинка) 5±0,1, присадку дифениламин 0,7-1,0, полиизобутилен П-10 2-5, многофункциональную присадку 0,5-5, масло веретенное АУ до 100. Достигаемый технический результат заключается в расширении температурного диапазона применения, повышении прочностных и смазывающих свойств. 3 табл.

Формула изобретения RU 2 672 266 C1

Пластичная смазка для тяжелонагруженных узлов трения качения и скольжения на основе смеси масел, содержащая омыляющие вещества, функциональные антиокислительную и противоизносную присадки, отличающаяся тем, что она дополнительно содержит полиизобутилен П-10 как вязкостную присадку, а в качестве многофункциональной присадки - полимерные фосфоровольфраматы лития и натрия при следующем соотношении компонентов, мас.%:

Масло касторовое 19±2 Известь 0,5±0,1 Натр-едкий 0,5±0,1 ДФ-11 5±0,1 Присадка дифениламин 0,7-1,0 Полиизобутилен П-10 2-5 Многофункциональная присадка 0,5-5 Масло веретенное АУ до 100

Документы, цитированные в отчете о поиске Патент 2018 года RU2672266C1

СРЕДНЕТЕМПЕРАТУРНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ КАЧЕНИЯ И СКОЛЬЖЕНИЯ 2001
  • Букин Виктор Евгеньевич
  • Чередниченко Петр Георгиевич
RU2202601C2
В.В.Синицын
Справочник, Пластические смазки в СССР
М.: Химия, 1984, с.80
СМАЗОЧНО-ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛОВ 1991
  • Фишбейн С.Ю.
  • Серазетдинов Д.З.
  • Полянская Т.С.
  • Абрамова Л.И.
  • Исина А.С.
SU1822198A1
US 6127327 A1, 03.10.2000.

RU 2 672 266 C1

Авторы

Колесников Владимир Иванович

Сычев Александр Павлович

Колесников Игорь Владимирович

Воропаев Александр Иванович

Мясников Филипп Васильевич

Даты

2018-11-13Публикация

2018-06-06Подача