Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии.
Известен способ уплотнения осадков в хвостохранилищах (патент РФ №2475454, опубл. 20.02.2013) позволяющий ускорить образование осадка сапонита NaMg3[AlSi3O10](OH)2⋅4H2O, обладающего заданной плотностью, из водной суспензии, с осветлением оборотной воды в хвостохранилищах для замкнутого процесса переработки руды.
Недостатком способа является полная зависимость технологического процесса от климатических, временных, температурных показателей и кроме того, требует значительного землеотвода.
Известен способ коагуляции, применяемый для очистки жидкости представляющей водную дисперсную систему (Запольский А.К., Коган А.А. Коагулянты и флокулянты в процессах очистки воды: свойства. Получение. Применение. - Л. Химия. 1987. - 208 с), состоящую из сапонитового глинистого минерала NaMg3[AlSi3O10](OH)2⋅4H2O в высокой степени раздробленности (дисперсная фаза 20…40 мкм) взвешенных частиц. Процесс коагуляции, осуществляют путем введение в пульпу раствора сульфата (хлорида) алюминия, который имеет своей целью дестабилизировать дисперсную систему (дисперсная среда-вода) и способствует соединению и слипанию сапонитового глинистого минерала NaMg3[AlSi3O10](OH)2⋅4H2O чтобы получить агрегацию частиц сапонит-гидрооксид алюминия.
Недостатком способа является высокая коррозионная химическая активности сульфата алюминия при гидролизе Al2(SO4)+6H2O=3Al(ОН)3твердое+3H2SO4 (ионов гидрооксония H3O+) по отношению к технологической аппаратуре, используемой для осадительных процессов (сапонита) осветления воды.
Известен способ обесшламливания оборотных сапонитсодержащих вод и устройство для его реализации (патент РФ №2529220, опубл. 27.09.2014). Объектом исследований являлись сапонитсодержащие водные системы хвостохранилища. Исследовательскими укрупненными испытаниями, выполненными с использованием разработанного электрохимического сепаратора, подтверждена возможность эффективного извлечения и осаждения тонкодисперсных шламов (сапонита), как из оборотной воды с содержанием шламов до 82 г/дм3, так и сливов классификатора с содержанием минерала сапонита 245…265 г/дм3. Удельный расход электроэнергии составил 4-7 кВт⋅ч на 1 м3 исходной или до 5-8,8 кВт⋅ч на 1 м3 осветленной воды. При этом электрохимическое воздействие позволяет получить, независимо от исходной концентрации шламов в пульпе, осветленные сливы с содержанием твердой фазы до 20 г/дм3 и сапонитсодержащий продукт с содержанием твердой фазы до 600 г/дм3 при извлечении более 80%. Доочистка слива в пакетном сгустителе обеспечивает содержание в нем твердой фазы 3-15 г/дм3.
Недостатком способа является очень большой расход электроэнергии: исходя из составленного материального баланса количество оборотной сточной воды составляет 2500 м3/час, которое необходимо очистить для того чтобы создать замкнутую систему вооборота для комплексной переработки сапонитовой руды. Даже при минимальной цене 5 кВт⋅ч на 1 м3 осветленной воды и часовом расходе 2500 м3/час. Расход электроэнергии составить 12500 кВт⋅ч. При годовом обороте воды, используемой в технологическом процесс 12500×8150=101875000 квт. При этом необходимо учесть, что очистке подвергнется только сапонитсодержащий продукт с содержанием твердой фазы до 600 г/дм3 при извлечении более 80%.
Известен способ сгущения сапонитовой суспензии (патент РФ №2448052, опубл. 20.04.2012), путем оседания сапонитовых частиц для последующего отделения образующегося осадка, с последующей обработкой углекислым газом под давлением до 2 кгс/см2. Количество углекислого газа вводят в количестве до 300 г на 1 кг сухого осадка.
Недостатком способа является большой расход углекислого газа, который не отвечает стехиометрическим соотношениям реакции и уже по этим показателям данный способ является экономически не выгодным и кроме того избыточная обработка карбонатов кальция и магния повышает их растворимость и общую минерализацию воды. Таким образом, введение углекислого газа в сапонитовую суспензию под давлением до 2 кгс/см2 в количестве до 300 г на 1 кг сухого осадка не увеличивает скорость ее сгущения при отстаивании, поскольку повышает растворимость карбонатов кальция и магния и ухудшает свойства воды, повышая ее минерализацию.
Известен способ сгущения суспензии методом отстаивания (Невзоров А.Л., Коршунов А.А. Исследование свойств хвостовых отложений как источника техногенной нагрузки на окружающую среду. «Лесной журнал». 2007. №4, стр. 140-144), принятый за прототип, при котором происходит отделение частиц водной суспензии под действием силы тяжести. Авторами были проведены лабораторно экспериментальные опыты в результате которых было выявлено, что процесс седиментации происходит очень медленно. Исследования показали, что через 50 суток, процесс осаждения не прекратился, донные отложения находятся в воде во взвешенном состоянии. В естественных условиях, когда надводные потоки гидросмеси падают в пруд-отстойник, вызывая вовлечение седиментирующих отложений, процесс осаждения твердой фракции хвостов происходит еще медленнее, процесса седиментации заканчивается через 1,5 года. Скорость оседания частиц зависит от их размера, плотности и от вязкости среды.
Основным недостатком данного способа является длительность процесса отстаивания суспензии с наличием таких мелкодисперсных частиц, как частицы сапонита, без ввода коагулянтов, имеющих свойство связывать частицы сапонита и увеличивать скорость отстаивания пульпы, процесс отстаивания может привести к увеличению занимаемых площадей, отведенных под хвостохранилище, а наличие в воде частиц сапонита во взвешенном состоянии ухудшит качество и увеличит расход оборотной воды для обогатительной фабрики.
Техническим результатом изобретения является получение очищенной воды в соответствии с СанПиН 2.1.5.980-00 с вовлечением в процесс очистки всех технологических вод после процесса обогащения, а это позволит организовать систему оборотного водоснабжения обогатительной фабрики, позволяющую сократить расход свежей воды, и исключить сброс производственных стоков, а использование натуральных минеральных неорганических веществ входящих в состав кальцийалюмосиликатного реагента позволит снизить нагрузку на окружающую среду региона добычи и увеличить скорость седиментации пульпы.
Технический результат достигается тем, что пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин, и затем полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента составом в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы.
Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента поясняется следующими фигурами:
фиг. 1 - исходная сапонитовая пульпа, разбавленная водой в соотношении 1:5 в которую добавлен кальцийалюмосиликатный коагулянт и перемешена в течении 5-7 минут при комнатной температуре;
фиг. 2 - сапонитовая пульпа, подвергнутая отстаиванию в течении 30 минут при комнатной температуре;
фиг. 3 - сапонитовая пульпа, подвергнутая отстаиванию в течении 75 минут при комнатной температуре;
фиг. 4 - сапонитовая пульпа, подвергнутая отстаиванию в течении 120 минут при комнатной температуре;
Способ осуществляется следующим образом. Сапонитовую пульпу разбавляют в стакане водой (Фиг. 1) в соотношении 1:5 при комнатной температуре проводят процесс перемешивания в течении от 5 до 7 минут. Из полученного таким образом раствора сапонит, в течении 120 минут (Фиг. 2) осаждают методом коагуляции с введением кальцийалюмосиликатного реагента, в зависимости от консистенции пульпы (содержание взвешенных частиц варьирует в диапазоне 90 г/л класс крупности минерала -71 мкм), в количестве от 2 до 5 г. Осаждение сапонита происходит при комнатной температуре. Сапонит осаждается на дне стакана в виде суспензии (Фиг. 3), верхний слой чистой воды используется для промывки алмазоносной руды (Фиг. 4).
Пример 1
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 250 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:1) до 250 мл чистой водой в мерных стаканах с применением 2 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 2 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 10 мл чистой воды без взвесей, плотность осадка составила 14,4%) по твердому веществу.
Пример 2
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 120 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:3) до 360 мл чистой водой в мерных стаканах с применением 3 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 5 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 53 мл чистой воды без взвесей, плотность осадка составила 12,3%) по твердому веществу.
Пример 3
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 80 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:5) до 400 мл чистой водой в мерных стаканах с применением 5 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 7 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 120 мл чистой воды без взвесей, плотность осадка составила 10,4%) по твердому веществу.
Представленные примеры позволяют сделать вывод, что из-за обладания более высокой дисперсностью и соответственно емкостью обмена сапонит по сравнению с другими минеральными группами монтмориллонита, а также плотности 2,3-2,5 г/см3 и твердости по Моссу 2,5 и размера частиц в 40 микрон сапонит обладает исключительно высокой устойчивостью в водной среде.
Таким образом, интенсивное перемешивание в течении 5-7 мин пульпы с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л и разбавленной водой в соотношении 1:5 и введение кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) в количестве от 2 до 5 г на 400-500 мл увеличивает скорость ее сгущения при отстаивании, за счет того, что полученный реагент обладает каогуляционными свойствами, который связывает частицы сапонита в укрупненные агрегаты, это обеспечивает возможность не только оседания частиц на дно и выталкивание на поверхность чистой воды, но и связывание сапонитового шлама дамбы хвостохранилища от дальнейшего разрушения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОСАЖДЕНИЯ САПОНИТОВОЙ ПУЛЬПЫ С ПРИМЕНЕНИЕМ СУЛЬФАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ И ДВУХКАЛЬЦИЕВОГО СИЛИКАТА | 2020 |
|
RU2743229C1 |
СПОСОБ ОЧИСТКИ ОБОРОТНОЙ ВОДЫ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ ОТ САПОНИТСОДЕРЖАЩЕГО МАТЕРИАЛА И ПЕСКА | 2021 |
|
RU2780569C1 |
Способ осветления сапонитовой глинистой суспензии | 2022 |
|
RU2800757C1 |
СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ | 2018 |
|
RU2669272C1 |
СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ | 2010 |
|
RU2448052C1 |
СПОСОБ ОСВЕТЛЕНИЯ САПОНИТОВОЙ ГЛИНИСТОЙ СУСПЕНЗИИ | 2023 |
|
RU2810425C1 |
СПОСОБ ПОЛУЧЕНИЯ КАЛЬЦИЙАЛЮМОСИЛИКАТНОГО НЕОРГАНИЧЕСКОГО КОАГУЛЯНТА | 2018 |
|
RU2683082C1 |
Способ изготовления керамических стеновых изделий и плитки | 2016 |
|
RU2640437C1 |
СПОСОБ ИЗМЕЛЬЧЕНИЯ АЛМАЗОНОСНОЙ САПОНИТОСОДЕРЖАЩЕЙ РУДЫ ДЛЯ ЕЁ ПОСЛЕДУЮЩЕГО ОБОГАЩЕНИЯ | 2016 |
|
RU2665767C2 |
СПОСОБ УПЛОТНЕНИЯ ОСАДКОВ В ХВОСТОХРАНИЛИЩАХ | 2009 |
|
RU2475454C2 |
Изобретение может быть использовано в области горнорудной промышленности при обогащении алмазоносных кимберлитовых пород. Способ включает извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания. Пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин. Полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента состава, мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы. Способ обеспечивает увеличение скорости сгущения пульпы при отстаивании, сокращение расхода свежей воды и исключение сброса производственных стоков. 4 ил., 3 пр.
Способ осаждения сапонитовой пульпы, включающий извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания, отличающийся тем, что пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин и затем полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента составом в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы.
НЕВЗОРОВ А.Л., КОРШУНОВ А.А | |||
Исследование свойств хвостовых отложений как источника техногенной нагрузки на окружающую среду, Лесной журнал, 2007, N 4, с.140-144 | |||
СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ | 2010 |
|
RU2448052C1 |
СПОСОБ РАЗДЕЛЕНИЯ ТВЕРДОЙ И ЖИДКОЙ ФАЗ ВОДОНАСЫЩЕННОГО ТЕХНОГЕННОГО ШЛАМА | 2003 |
|
RU2247082C2 |
СПОСОБ ПОЛУЧЕНИЯ АДСОРБЕНТА-КОАГУЛЯНТА НА ОСНОВЕ КРАСНОГО ШЛАМА | 2014 |
|
RU2571116C2 |
СПОСОБ УДАЛЕНИЯ И ОБЕЗВРЕЖИВАНИЯ ИЛОВЫХ ОСАДКОВ СТОЧНЫХ ВОД И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2321553C2 |
US 7824570 B2, 02.11.2010 | |||
Способ подготовки шихты к спеканию | 1982 |
|
SU1174403A1 |
Авторы
Даты
2018-12-25—Публикация
2017-10-17—Подача