СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ Российский патент 2018 года по МПК C02F9/04 C02F1/52 B01D21/01 C02F101/10 C02F103/10 

Описание патента на изобретение RU2669272C1

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии.

Известен способ сгущения сапонитовой суспензии путем ее замораживания и последующего оттаивания, приводящего к разрушению диффузного слоя минеральных частиц, их агрегации и возникновению ближних коагуляционных связей с образованием осадка и с его последующей дегидратацией и консолидацией (Автореферат диссертации на соискание уч. ст. канд. геолого-минерал. наук "Условия накопления сапонитосодержащих осадков и технология их сгущения в хвостохранилище месторождения алмазов им. М.В. Ломоносова" Карпенко Ф.С., Учреждение РАН Ин-т геоэкологии им. Б.М. Сергеева РАН, М., 2009 г.).

Основным недостатком способа является обратимость процесса, необходим значительный землеотвод и большие материальные затраты на обустройство и организацию работ.

Известен способ сгущения суспензии методом отстаивания, при котором происходит отделение частиц водной суспензии под действием силы тяжести. (Большая советская энциклопедия, 2-е изд., т. 31, с. 438). Скорость оседания частиц зависит от их размера, плотности и от вязкости среды.

Основным недостатком известного способа является длительность процесса отстаивания суспензий таких мелких частиц, как частицы сапонита, что может привести к отрицательным последствиям при разработке алмазоносных месторождений.

Известен способ коагуляции, применяемый для очистки жидкости представляющей водную дисперсную систему (Запольский А.К., Коган А.А. Коагулянты и флокулянты в процессах очистки воды: свойства. Получение. Применение. - Л. Химия. 1987. - 208 с). Процесс коагуляции, осуществляют путем введения в пульпу раствора сульфата алюминия, который имеет своей целью дестабилизировать дисперсную систему. В результате гидролиза сульфата алюминия образуется труднорастворимая гидроокись Al2 (ОН)3, которая адсорбирует частицы примесей из воды с образованием крупных агломератов, удаляемых отстаиванием или фильтрацией. Поскольку Al2 (ОН)3 - амфотерная гидроокись, получить стабильный осадок, исходя из константы гидролиза, удастся при рН=6,5-7,5. С целью получения наиболее устойчивого осадка применяют подщелачивание содой или известью.

Недостатками способа являются, нестабильность процесса коагуляции, в том числе при низких температурах воды; необходимость подщелачивать сгущаемую пульпу с целью уменьшения концентрации Н+; содержание остаточного алюминия более 0,2 мг/л; высокая коррозионная химическая активности сульфата алюминия при гидролизе по отношению к технологической аппаратуре, используемой для осадительных процессов сгущения сапонитовой пульпы.

Известен способ складирования хвостов обогащения. (Авторское свидетельство SU №1314059, опубл. 30.05.1987), где уменьшение объема хвостохранилища осуществляется за счет концентрации твердой фазы хвостовой пульпы. Реализацию способа осуществляют при положительных температурах воздуха путем замораживания пульпы на криогенных установках. Для этого хвостовую пульпу разливают в разъемные ковши, которые передвигают по замкнутой траектории. Попадая в зону холода, пульпа замораживается и через определенный промежуток времени освобождается из ковшей в виде брикетов, которые затем транспортируют к месту хранения (хвостохранилище) и оттаивают при положительных температурах. В процессе оттаивания пульпа разделяется на жидкую и твердую фазы. Жидкая фаза удаляется самотеком. Сгущенная твердая фаза (хвосты) после обезвоживания земснарядами или насосами перекачивается в хвостохранилище и складируется, при этом объем твердой фазы уменьшается. В зимний период хвостовую пульпу перекачивают с помощью технических средств на предварительно подготовленные дренируемые хвостовые карты и замораживают послойно до расчетной высоты.

Основной недостаток способа заключаются в следующем: на дренированных хвостовых картах невозможно получить осветленную воду как при медленном послойном замораживании тонкодисперсной хвостовой пульпы в зимний период, так и при ее оттаивании. Так же после оттаивания тонкодисперсной хвостовой пульпы в летний период сгущенная фаза после сброса осветленной воды достигает плотности не выше 0,7 т/м3, что недостаточно для ее промышленного применения и использования в качестве ценного сырья. Полученный уплотненный осадок сапонита нуждается в дополнительной концентрации.

Известен способ сгущения сапонитовой суспензии (патент RU 2448052, опубл. 20.04.2012), путем введения в суспензию под давлением до 2 кгс/см2 углекислого газа в количестве до 300 г на 1 кг сухого осадка, затем обрабатывают коагулянтом - сернокислым алюминием.

Недостатком способа является необратимое повышение минерализации жидкой фазы сапонитовой суспензии. Химическая формула молекулы сапонита Ca0,25(Mg,Fe)3[(Si,Al)4O10](OH)2⋅nH2O. При введении в суспензию под давлением до 2 кгс/см2 углекислого газа в количестве до 300 г на 1 кг происходит образование комплекса: Fe3[(Si,Al)4O10](OH)2, а так же карбонатов кальция и магния - растворимых соединений. Образовавшиеся карбонаты переходят в жидкую часть пульпы (растворяются), повышая ее минерализацию. Затем в пульпу вводят коагулянт-сернокислый алюминий. Помимо коагуляционных хлопьев образуется сульфат железа (III). - растворимое соединение, которое переходит в жидкую часть пульпы, повышая минерализацию.

Техническим результатом изобретения является получение очищенной воды в соответствии с СанПиН 2.1.5.980-00 с вовлечением в процесс очистки всех технологических вод после процесса обогащения. Это позволит организовать систему оборотного водоснабжения, позволяющую сократить расход свежей воды и исключить сброс производственных стоков. Так же при реализации способа удается получить осадок сгущенной твердой фазы, пригодный для конусного складирования.

Технический результат достигается тем, что слив классификатора разбавляется водой в реакторе до плотности от 1250 до 1350 кг/м3, затем поступает в сгуститель, снабженный мешалкой, и обрабатывается коагулянтом, в качестве коагулянта используется оксихлорид алюминия, с концентрацией рабочего коагулянта по Al2O3 15% при перемешивании со скоростью от 80 до 110 об/мин, где происходит разделение твердой и жидкой фазы, жидкая фаза поступает обратно в цикл, а сгущенная твердая фаза в хвостохранилище

Способ поясняется следующими фигурами:

фиг. 1 - выделение воды при сгущении суспензии коагулянтами;

фиг. 2 - разделение суспензии на сгущенную твердую фазу и воду;

фиг. 3 - уплотнение осадка твердой фазы.

Способ осуществляется следующим образом. Вначале слив классификатора - сапонитовая суспензия подается в реактор, снабженный лопастной мешалкой и плотномером, затем в реактор подается вода. Происходит разбавление суспензии водой до плотности ρразб.п. от 1250 до 1350 кг/м3. Перемешивание суспензии протекает со скоростью от 60 до 90 об/мин. Затем сапонитовая суспензия подается в сгуститель, снабженный лопастной мешалкой. В сгуститель подается раствор оксихлоридного коагулянта, в качестве коагулянта используется оксихлорид алюминия, с содержанием алюминия по Al2O3 197,25 кг/м3, концентрация рабочего раствора коагулянта по Al2O3 15%, плотность рабочего раствора ρраб.р-ра=1315 кг/м3 расход рабочего раствора коагулянта 120 м3 на 1000 м3 разбавленной пульпы. При воздействии на дестабилизированную суспензию оксихлоридным коагулянтом протекает процесс гидролиза солей. В результате гидролиза в коллоидном растворе образуются многозарядные ионы металлов, которые нейтрализуют силы отталкивания между коллоидными частицами. Перемешивание коллоидного раствора осуществляется со скоростью от 80 до 110 об/мин, приводит к столкновению коллоидных частиц. Силы притяжения заставляют коллоидные частицы слипаться друг с другом, что приводит к образованию крупных агломератов и сгущению твердой фазы сапонитовой суспензии. Затем сгущенная твердая фаза сапонитовой суспензии поступает в хвостохранилище, а очищенная вода обратно в цикл. В результате осаждения твердой фазы сапонитовой суспензии и последующего уплотнения 1 т осадка выделяется не менее 3 м3 воды с концентрацией шламовых частиц менее 0,5 г/л, пригодной для использования ее в системе оборотного водоснабжения фабрики. Образовавшаяся вода поступает обратно в цикл, а сгущенная твердая фаза сапонитовой суспензии в хвостохранилище. После сгущения твердая фаза сапонитовой суспензии имеет влажность 30% (70% твердого), то есть возможно конусное складирование.

Способ поясняется следующими примерами.

Пример 1. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). Затем часть разбавленной суспензии поместили в сатуратор и обработали пропусканием через нее под давлением 1,5 кгс/см2 углекислого газа в количестве 250 г на 1 кг сухого осадка. После чего в 2 дренажных колпачка производства ООО "Калан" (изделие ДКЗС-40/60-70В) влили по 1000 мл сапонитовой суспензии: в колпачок 1 - обработанную CO2; в колпачок 2 - без обработки. Сгущение суспензии проводилось по общепринятой методике с применением коагулянтов (колпачок 1 - сернокислый алюминий, колпачок 2 - оксихлоридный коагулянт) при давлении 1 Бар, температуре 298 К. В результате через 1 сутки из колпачка 1 выделено 160 мл воды, а из стакана с раствором, обработанным оксихлоридным коагулянтом, выделено 270 мл воды.

Пример 2. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). Затем часть разбавленной суспензии поместили в сатуратор и обработали пропусканием через нее под давлением 1,5 кгс/см2 углекислого газа в количестве 250 г на 1 кг сухого осадка. После чего в 2 цилиндра влили по 1000 мл сапонитовой суспензии: в цилиндр 1 - обработанную CO2; в цилиндр 2 - без обработки. Сгущение суспензии проводилось по общепринятой методике с применением коагулянтов (цилиндр 1 - сернокислый алюминий, цилиндр 2 - оксихлоридный коагулянт) при давлении 1 Бар, температуре 298K. при давлении 1 Бар, температуре 298K. В результате через 1 сутки в цилиндре с раствором, обработанным сернокислым алюминием выделено 110 мл воды, а из цилиндра с раствором, обработанным оксихлоридным коагулянтом, выделено 250 мл воды (фиг 1). Таким образом, применение оксихлоридного коагулянта в технологии сапонитовой суспензии увеличивает скорость ее осаждения при отстаивании без применения карбонизации, определяя преимущество заявляемого способа над прототипом.

Пример 3. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). После чего 1000 мл суспензии влили в химический стакан. Сгущение суспензии проводилось по общепринятой методике с применением коагулянта (оксихлоридного коагулянта) при давлении 1 Бар, температуре 298K. В результате через 3 суток в химическом стакане с пульпой, обработанной раствором оксихлоридного коагулянта, выделилась вода цветностью 70 град. цв. (ГОСТ 31868-2012) и плотный осадок, (фиг 2, 3) Затем выделившуюся воду слили, осадок собрали в фарфоровую чашку для определения влажности. Содержание твердой фазы в осадке составляет 70%-осадок пригоден для конусного складирования, что продлевает срок эксплуатации хвостохранилища Ломоносовского ГОКа на 12-14 лет.

Похожие патенты RU2669272C1

название год авторы номер документа
СПОСОБ ОСАЖДЕНИЯ САПОНИТОВОЙ ПУЛЬПЫ С ПРИМЕНЕНИЕМ КАЛЬЦИЙАЛЮМОСИЛИКАТНОГО РЕАГЕНТА 2017
  • Алексеев Алексей Иванович
  • Бричкин Вячеслав Николаевич
  • Зубкова Ольга Сергеевна
  • Конончук Ольга Олеговна
RU2675871C1
СПОСОБ ОСАЖДЕНИЯ САПОНИТОВОЙ ПУЛЬПЫ С ПРИМЕНЕНИЕМ СУЛЬФАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ И ДВУХКАЛЬЦИЕВОГО СИЛИКАТА 2020
  • Алексеев Алексей Иванович
  • Зубкова Ольга Сергеевна
  • Полянский Арсений Станиславович
RU2743229C1
СПОСОБ ОСВЕТЛЕНИЯ САПОНИТОВОЙ ГЛИНИСТОЙ СУСПЕНЗИИ 2023
  • Иванов Игорь Николаевич
  • Самофалов Владимир Юрьевич
  • Тюрин Алексей Михайлович
  • Коленченко Валерий Валерьевич
  • Хабаров Юрий Германович
  • Вешняков Вячеслав Александрович
  • Фролов Андрей Алексеевич
  • Фролова Мария Аркадьевна
RU2810425C1
Способ осветления сапонитовой глинистой суспензии 2022
  • Хабаров Юрий Германович
  • Вешняков Вячеслав Александрович
  • Фролов Андрей Алексеевич
  • Вяткин Николай Андреевич
RU2800757C1
СПОСОБ ОЧИСТКИ ОБОРОТНОЙ ВОДЫ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ ОТ САПОНИТСОДЕРЖАЩЕГО МАТЕРИАЛА И ПЕСКА 2021
  • Малыгина Мария Александровна
  • Айзенштадт Аркадий Михайлович
  • Данилов Виктор Евгеньевич
  • Пожилов Михаил Андреевич
RU2780569C1
СПОСОБ УПЛОТНЕНИЯ ОСАДКОВ В ХВОСТОХРАНИЛИЩАХ 2009
  • Осипов Виктор Иванович
  • Карпенко Фёдор Сергеевич
RU2475454C2
СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ 2010
  • Утин Александр Вадимович
RU2448052C1
РЕАГЕНТ ДЛЯ ОСВЕТЛЕНИЯ ГЛИНИСТОЙ СУСПЕНЗИИ 2023
  • Хабаров Юрий Германович
  • Вешняков Вячеслав Александрович
  • Вяткин Николай Андреевич
  • Айзенштадт Аркадий Михайлович
RU2808870C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЙ-АММОНИЙНОГО ФОСФАТА ИЗ САПОНИТОВОГО ШЛАМА 2023
  • Зубкова Ольга Сергеевна
  • Торопчина Мария Андреевна
  • Волощук Евгений Алексеевич
RU2818698C1
СПОСОБ ИЗМЕЛЬЧЕНИЯ АЛМАЗОНОСНОЙ САПОНИТОСОДЕРЖАЩЕЙ РУДЫ ДЛЯ ЕЁ ПОСЛЕДУЮЩЕГО ОБОГАЩЕНИЯ 2016
  • Утин Александр Вадимович
RU2665767C2

Иллюстрации к изобретению RU 2 669 272 C1

Реферат патента 2018 года СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ

Изобретение может быть использовано в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов. Способ сгущения сапонитовой суспензии включает осаждение частиц для последующего отделения образующегося осадка и обработку коагулянтом. Слив классификатора разбавляют водой в реакторе до плотности от 1250 до 1350 кг/м3, затем суспензию подают в сгуститель, снабженный мешалкой, и обрабатывают коагулянтом. В качестве коагулянта используют оксихлорид алюминия с 15% концентрацией рабочего коагулянта по Al2O3. Проводят перемешивание со скоростью от 80 до 110 об/мин и разделяют твердую и жидкую фазы. Жидкую фазу подают обратно в цикл, а сгущенную твердую фазу - в хвостохранилище. Способ обеспечивает получение очищенной воды с использованием всех технологических вод после процесса обогащения, что позволяет организовать систему оборотного водоснабжения, сократить расход свежей воды и исключить сброс производственных стоков. Кроме того, полученный осадок сгущенной твердой фазы пригоден для конусного складирования. 3 ил., 3 пр.

Формула изобретения RU 2 669 272 C1

Способ сгущения сапонитовой суспензии, включающий осаждение частиц для последующего отделения образующегося осадка и обработку коагулянтом, отличающийся тем, что слив классификатора разбавляется водой в реакторе до плотности от 1250 до 1350 кг/м3, затем поступает в сгуститель, снабженный мешалкой, и обрабатывается коагулянтом, в качестве коагулянта используется оксихлорид алюминия, с концентрацией рабочего коагулянта по Al2O3 15% при перемешивании со скоростью от 80 до 110 об/мин, где происходит разделение твердой и жидкой фазы, жидкая фаза поступает обратно в цикл, а сгущенная твердая фаза в хвостохранилище.

Документы, цитированные в отчете о поиске Патент 2018 года RU2669272C1

СПОСОБ СГУЩЕНИЯ САПОНИТОВОЙ СУСПЕНЗИИ 2010
  • Утин Александр Вадимович
RU2448052C1
СПОСОБ ИЗВЛЕЧЕНИЯ САПОНИТСОДЕРЖАЩИХ ВЕЩЕСТВ ИЗ ОБОРОТНОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Чантурия Валентин Алексеевич
  • Трофимова Эльга Алексеевна
  • Богачев Вадим Иванович
  • Двойченкова Галина Петровна
  • Миненко Владимир Геннадиевич
  • Тимофеев Александр Сергеевич
  • Курьянов Михаил Васильевич
RU2535048C2
СПОСОБ СГУЩЕНИЯ ПУЛЬПЫ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКИХ ВОЛН 2016
  • Бахарев Сергей Алексеевич
RU2618007C1
Способ очистки сточных вод от взвешенных веществ 1985
  • Винарский Наум Самуилович
  • Вычегжанина Галина Валериановна
  • Гринберг Аврам Маркович
  • Лукомская Людмила Дмитриевна
SU1301785A1
Механизм для поворачиваний железнодорожных поворотных кругов 1927
  • Калашников Н.А.
SU9453A1
US 6120690 A, 19.09.2000.

RU 2 669 272 C1

Авторы

Алексеев Алексей Иванович

Конончук Ольга Олеговна

Зубкова Ольга Сергеевна

Бричкин Вячеслав Николаевич

Даты

2018-10-09Публикация

2018-01-15Подача