АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТИПА ДЕФЕКТА СТРУКТУРЫ ОБРАЗЦА ИЗ УГЛЕПЛАСТИКА Российский патент 2018 года по МПК G01N29/14 

Описание патента на изобретение RU2676209C9

Изобретение относится к неразрушающему контролю и технической диагностике композиционных материалов на основе углепластиков акустико-эмиссионным методом и может быть использовано для их контроля во время испытаний и эксплуатации конструкций.

Известен акустико-эмиссионный способ диагностирования изделий из композиционных материалов на основе углепластика, включающий установку на изделие акустических преобразователей, работающих в режиме приема и излучения, калибровку, прием, регистрацию и оценку сигналов акустической эмиссии, оцифровку сигналов, их предварительную обработку, фильтрацию помех, определение временных интервалов между приходом каждого сигнала на акустические преобразователи, определение по разности времен прихода координат источников сигналов акустической эмиссии. Кроме того, в зоне контроля устанавливают пьезоантенну из преобразователей, разбивают зону на секторы, в которые последовательно устанавливают акустический преобразователь имитатора сигналов по дуге окружности радиусом не менее половины минимального расстояния между акустическими преобразователями, задают минимальную амплитуду генератора имитатора, определяют времена прихода сигналов акустической эмиссии для построения годографа скоростей, после чего по годографу строят матрицу разностей времен прихода, рассчитывают погрешности локации сигналов имитатора Δих, Δиу в соответствии с выражениями

где хлок, улок - координаты калибровочных сигналов акустической эмиссии, рассчитанные по матрице разностей времен прихода; хр, ур - реальные координаты места установки акустического преобразователя имитатора, причем при превышении погрешности допустимой величины увеличивают амплитуду сигналов генератора имитатора до тех пор, пока погрешность локации не будет находиться в пределах допустимой величины, затем по зарегистрированной амплитуде сигналов акустической эмиссии в каждом канале устанавливают их пороги селекции, после чего объект контроля нагружают, зарегистрированные при этом времена прихода сигналов акустической эмиссии сравнивают с матричными значениями и по наиболее близким из них судят о координатах источников дефектов (патент РФ №2599327, МПК G01N 29/14, БИ №28, 2016, приоритет от 09.06.2016), принятый за аналог.

Недостатком способа, принятого за аналог, является отсутствие методики анализа и оценки формы и основных информативных параметров сигналов акустической эмиссии, которые характеризуют процесс разрушения образца из углепластика. При использовании данного способа осуществляется определение времен прихода сигналов акустической эмиссии с учетом направления прихода для выполнения более точной локации источников.

Наиболее близким к данному способу является способ акустико-эмиссионного контроля дефектов в образцах из углепластика, включающий установку на образец акустических преобразователей, работающих в режиме приема и излучения, калибровку, нагружение образца, прием, регистрацию и обработку сигналов акустической эмиссии, их оцифровку, фильтрацию помех, локацию сигналов акустической эмиссии в области дефекта, определение структурного коэффициента, по которому судят о типе дефектов и состоящий в том, что в процессе статического нагружения со ступенчатым изменением нагрузки через интервал ΔР осуществляется локация сигналов акустической эмиссии в области концентратора напряжений, нагружение останавливают при нагрузке, соответствующей появлению устойчивой локации, разгружают образец, после чего рассчитывают значение структурного коэффициента и определяют его зависимость от нагрузки, выполняют фрактографический анализ материала в области локации, следующий образец нагружают до нагрузки, превышающей значение первой на (25-30) %, выполняют локацию сигналов, останавливают испытания, разгружают образец, определяют значение структурного коэффициента и его зависимость от нагрузки, затем отправляют на фрактографию, третий образец нагружают до нагрузки, составляющей (65-70) % от разрушающего значения и выполняют аналогичные расчеты, о связи изменения структуры сигналов акустической эмиссией с процессом разрушения судят, исходя из сравнительного анализа зависимостей структурного коэффициента от нагрузки и результатов фрактографии (Степанова Л.Н., Батаев В.А., Чернова В.В. Исследование разрушения образцов из углепластика при статическом нагружении с использованием методов акустической эмиссии и фрактографии // Дефектоскопия, 2017, №6, с. 26-33), принятый за прототип.

При использовании данного способа по локации сигналов акустической эмиссии устанавливается момент начала разрушения нагружаемого образца из углепластика, а определять тип разрушения структуры образцов из углепластика не представляется возможным.

При разработке заявляемого акустико-эмиссионного способа определения типа дефекта структуры образца из углепластика была поставлена задача повышения надежности диагностики объектов из углепластика в режиме реального времени путем определения типа разрушения материала по изменению структуры сигналов акустической эмиссии.

Поставленная задача решается за счет того, что в акустико-эмиссионном способе определения типа дефекта структуры образца из углепластика, включающем установку на образец акустических преобразователей, работающих в режиме приема и излучения, калибровку, нагружение образца, прием, регистрацию и обработку сигналов акустической эмиссии, их оцифровку, фильтрацию помех, локацию сигналов акустической эмиссии в области дефекта, определение структурного коэффициента, по которому судят о типе дефекта, в область концентратора напряжений устанавливают тензодатчики, нагружение образца первоначально осуществляют до нагрузки, при которой тензодатчики фиксируют напряженно-деформированное состояние, соответствующее разрушению матрицы при растяжении и сжатии образца, после чего нагружение останавливают, проводят анализ формы сигналов акустической эмиссии из зоны локации и вычисляют структурный коэффициент, строят его зависимость от нагрузки, затем выполняют нагружение до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению волокна, после чего нагружение останавливают, вычисляют структурный коэффициент, строят зависимости структурных коэффициентов от нагрузки и судят о типе дефекта в образце: уменьшение структурного коэффициента соответствует разрушению матрицы, а его увеличение - разрушению волокна.

Тип повреждения образца определяют при текущем напряженно-деформированном состоянии по критериям дефектов в соответствии с выражениями:

- растрескивание матрицы при растяжении образца (σу>0):

- растрескивание матрицы при сжатии образца (σу<0):

- разрыв волокна (σх>0):

где σх, σy, σxy, σyz, σxz - текущие нормальные и касательные напряжения в образце, возникающие в процессе нагружения; Xt, Yt, Yc и Sxy, Syz, Sxz - значения пределов прочности на растяжение, сжатие и сдвиг, а структурный коэффициент определяют из соотношения

где D2, D3 - коэффициенты детализации соответственно на частотах (250-500) кГц и (125-250) кГц.

На фиг. 1 приведен график зависимости процента накопления повреждений λ в образце с укладкой монослоев [±45/90/0/90/±45] от нагрузки. На фиг. 2 показана локация источников сигналов акустической эмиссии образца 1 с укладкой монослоев [±45/90/0/90/±45] при нагрузке Р=18 кН. На фиг. 3 показана локация источников сигналов акустической эмиссии образца 2 с укладкой монослоев [±45/90/0/90/±45] при нагрузке Р=32 кН. На фиг. 4 приведены графики зависимости структурных коэффициентов сигналов акустической эмиссии от нагрузки для образцов 1 и 2. На фиг. 5, 6 показаны результаты фрактографического анализа материала образцов 1, 2.

Способ реализуется следующим образом.

На образец из углепластика наклеивают тензодатчики в область концентратора напряжений и устанавливают в его нагружающую машину. На нем размещают четыре акустических преобразователя, работающие в режиме приема и излучения. Затем проводят калибровку образца с целью определения скорости звука в объекте контроля во всех направлениях. Для этого каждый преобразователь последовательно переключают в режим излучения, а остальные акустические преобразователи работают в режиме приема и регистрируют сигналы акустической эмиссии от преобразователя, работающего в режиме обратного пьезоэффекта. По временам прихода и расстояниям между преобразователями рассчитывают скорость звука как , где а - расстояние между преобразователем, работающем в режиме излучения, и принимающим преобразователем; t - время распространения сигнала акустической эмиссии между данными преобразователями. Далее выполняют статическое нагружение образца до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению матрицы при растяжении и сжатии образца. Значение напряжений σ1 рассчитывают с применением подхода, основанного на модели развивающегося повреждения, который реализуют с использованием метода конечных элементов (Степанова Л.Н., Коваленко Н.А., Огнянова Е.С. и др. Использование метода конечных элементов, тензометрии и акустической эмиссии для определения механизма разрушения образцов из углепластика при прочностных испытаниях // Контроль. Диагностика, 2015, №4, с. 29-36):

- растрескивание матрицы при растяжении образца (σу>0):

- растрескивание матрицы при сжатии образца (σy<0):

где σх, σy, σxy, σxz _ текущие нормальные и касательные напряжения в образце, возникающие в процессе нагружения; Yt, Yc и Sxy, Syz, Sxz - значения пределов прочности на растяжение, сжатие и сдвиг. В режиме реального времени выполняют локацию сигналов акустической эмиссии. Для этого определяют времена прихода каждого сигнала на акустические преобразователи и рассчитывают координаты дефектов. После чего нагружение образца останавливают. Проводят анализ формы сигналов акустической эмиссии, зарегистрированных из зоны локации. Выполняют разложение сигнала акустической эмиссии по алгоритму быстрого вейвлет-преобразования (алгоритм Мала). Определяют коэффициенты детализации вейвлет-разложения и вычисляют их максимальные значения для второго и третьего уровней детализации. Вычисляют структурный коэффициент:

где D2, D3 - коэффициенты детализации соответственно на частотах (250-500) кГц и (125-250) кГц, полученные при частоте дискретизации исходного сигнала f=2 МГц (Степанова Л.Н., Рамазанов И.С., Чернова В.В. Вейвлет-анализ структуры сигналов акустической эмиссии при прочностных испытаниях образцов из углепластика // Контроль. Диагностика, 2015, №7, с.54-62).

Затем продолжают нагружение образца до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению волокна. Значения напряжений σ2 рассчитываются как: - разрыв волокна (σх>0):

где σxz - текущие касательные напряжения в образце, возникающие в процессе нагружения; Xt - значения пределов прочности на растяжение. Нагружение останавливают, и вычисляют структурные коэффициенты, строят зависимость структурных коэффициентов от нагрузки, по которой судят о типе дефекта образца: уменьшение структурного коэффициента соответствует разрушению матрицы, а его увеличение - разрушению волокна.

Пример 1

Осуществляли контроль дефектов двух образцов из углепластика 7700 размером 100×500 мм с концентратором напряжений в виде отверстия диаметром d=14 мм. В соответствии с ГОСТ 33375-2015 «Композиты полимерные. Метод испытания на растяжение образцов с открытым отверстием» отверстие должно быть не более чем 1/6 ширины образца. Размер отверстия составлял 1/7 ширины образца, что не противоречило требованиям ГОСТа. Акустико-эмиссионный контроль выполнялся с использованием диагностической акустико-эмиссионной системы СЦАД-16.10 с «плавающими» порогами селекции (свидетельство RU.C.27.007.A№40707, зарегистрировано в Государственном реестре средств измерений под номером 45154-10). На образцы устанавливалась прямоугольная пьезоантенна из четырех ПАЭ типа ПК-01-07 с полосой пропускания (100 … 700) кГц и четыре тензодатчика типа ПКС (свидетельство RU. C. 28. 007.А №30935) сопротивлением R=200 Ом, базой L=12 мм, коэффициентом тензочувствительности К=2,12. Провели калибровку образца, для чего каждый преобразователь последовательно переключали в режим излучения, а остальные акустические преобразователи - в режим приема и регистрировали сигналы акустической эмиссии от преобразователя-излучателя. По временам прихода и расстояниям между преобразователями рассчитали скорость звука.

Для образцов по формулам (1), (2) и (4) были определены значения напряжений σ1, и σ2 и соответствующие им нагрузки P1T=(0,23-0,2%)⋅Рразр и P2T=(0,46-0,51)⋅Рразр. Разрушающая нагрузка Рразр была определена экспериментально при испытании образцов с аналогичными геометрическими размерами, типом укладки монослоев и концентратором напряжений и составила РразрЭ=43,3 кН. Деформация ε определялась микропроцессорной многоканальной тензометрической системой ММТС-64.01 (свидетельство RU. C. 34. 007.А №44412) класса точности 0,2. Затем рассчитывалось напряжение σ=Е⋅ε, где Е - модуль упругости, кгс/мм; ε - относительная деформация. (Серьезнов А.Н., Степанова Л.Н., Кабанов С.И. и др. Тензометрия в транспортном машиностроении // Новосибирск: Наука, 2014, 272 с.). Нагрузка, рассчитанная с применением метода конечных элементов, составила РразрТ=43 кН. Погрешность расчетного метода составила δ=-0,69%.

Далее выполнялось ступенчатое статическое нагружение образца 1 до нагрузки Р1=18 кН через интервал ΔР=2 кН. При испытаниях была получена локация сигналов акустической эмиссии в области концентратора напряжений (фиг. 2). При увеличении нагрузки, прикладываемой к образцу 1, значение структурного коэффициента уменьшалось. В соответствии с формулой (3) это характеризовало смещение энергии сигналов акустической эмиссии в область частот (250-500) кГц.

Для подтверждения наличия дефекта в образце из области локации сигналов акустической эмиссии были изготовлены шлифы и проведен их фрактографический анализ с использованием растрового электронного микроскопа CarlZeissEVO 50 XVP. Выполнено два шлифа: материал шлифа 11 был вырезан из области отверстия, материал шлифа 12 - из условно бездефектной области, расположенной в зоне крепления образца гидравлическими захватами нагружающей машины MTS-100. Анализ материала из области отверстия показал, что в образце 1 доминирующим процессом разрушения является разрушение матрицы (фиг. 5). Таким образом, уменьшение значения структурного коэффициента при увеличении нагрузки характеризовало процесс разрушения матрицы.

Далее был испытан образец 2. Нагружение выполнялось до нагрузки Р2=32 кН ступенчато через интервал ΔР=2 кН. Получена локация сигналов акустической эмиссии в области концентратора напряжений (фиг. 3). Для них был рассчитан структурный коэффициент и построена его зависимость от нагрузки (фиг. 4). В процессе нагружения образца 2 значение структурного коэффициента сначала снижалось, а затем наблюдалось его увеличение, что означало перераспределение энергии в области частот (125-250) кГц.

Из материала образца 2 было выполнено шесть шлифов. Расположения шлифов 21-25 представлены на фиг. 3. Шлиф 26 был вырезан из условно бездефектной области. В образце 2 был определен большой объем разрушенного волокна в монослоях ±45°, а также расслоения волокон монослоя (фиг. 6).

Таким образом, появление разрушений волокон и их расслоения внутри монослоя, вызванного значительным разрушением матрицы, сопровождалось увеличением структурных коэффициентов локализованных сигналов акустической эмиссии при увеличении нагрузки.

Предложенный способ позволяет определять тип дефекта структуры материала образцов из углепластика за счет фиксации тензодатчиками напряженно-деформированного состояния в области концентратора напряжений, а также определения значений расчетных нагрузок, соответствующих разрушению матрицы или волокна, и введения критерия изменения структурного коэффициента в зависимости от появления данных дефектов.

Похожие патенты RU2676209C9

название год авторы номер документа
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА 2017
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Рамазанов Илья Сергеевич
  • Чернова Валентина Викторовна
RU2674573C1
АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФЕКТОВ СТРУКТУРЫ ОБРАЗЦА ИЗ УГЛЕПЛАСТИКА 2019
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Чернова Валентина Викторовна
RU2704144C1
Способ выявления скрытых дефектов в композиционных материалах методом стоячих волн 2023
  • Марилов Олег Константинович
  • Федин Константин Владимирович
RU2816673C1
СПОСОБ ОЦЕНКИ КАЧЕСТВА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ОТРАБОТКИ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2023
  • Бочкарев Сергей Васильевич
  • Галиновский Андрей Леонидович
  • Мартысюк Дмитрий Александрович
  • Сальников Алексей Федорович
  • Михайлов Александр Александрович
  • Долгих Анна Игоревна
RU2806241C1
АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ДИАГНОСТИРОВАНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ УГЛЕПЛАСТИКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Рамазанов Илья Сергеевич
  • Чернова Валентина Викторовна
RU2599327C1
Способ дифференциальной оценки стадий поврежденности изделия, выполненного из композитного материала 2023
  • Наймарк Олег Борисович
  • Уваров Сергей Витальевич
  • Банников Михаил Владимирович
  • Баяндин Юрий Витальевич
  • Шипунов Глеб Сергеевич
  • Никитюк Александр Сергеевич
  • Аглетдинов Эйнар Альбертович
RU2816129C1
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ ПРЕДЕЛЬНОГО СОСТОЯНИЯ И РАННЕГО ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНОСТИ РАЗРУШЕНИЯ МАТЕРИАЛОВ И ИЗДЕЛИЙ 2009
  • Васильев Игорь Евгеньевич
  • Иванов Валерий Иванович
  • Махутов Николай Андреевич
  • Ушаков Борис Николаевич
RU2403564C2
Комбинированный способ исследования деформаций и напряжений 2015
  • Пермяков Владимир Николаевич
  • Махутов Николай Андреевич
  • Сидельников Сергей Николаевич
RU2611597C1
СПОСОБ ОПЕРАТИВНОГО ОПРЕДЕЛЕНИЯ КАЧЕСТВА МИКРОСТРУКТУРЫ ТИТАНОВОГО СПЛАВА УПРУГОГО ЭЛЕМЕНТА 2013
  • Данилин Геннадий Александрович
  • Белогур Валентина Павловна
  • Ремшев Евгений Юрьевич
  • Титов Андрей Валерьевич
  • Черный Леонид Григорьевич
  • Метляков Дмитрий Викторович
RU2525320C1
УНИВЕРСАЛЬНЫЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКИЙ СТЕНД ИЗУЧЕНИЯ ГЕНЕРАЦИИ И РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ЭЛЕМЕНТАХ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ ОТ ИМИТАТОРОВ РЕАЛЬНЫХ ИСТОЧНИКОВ АКУСТИЧЕСКОЙ ЭМИССИИ 2015
  • Растегаев Игорь Анатольевич
  • Данюк Алексей Валериевич
  • Мерсон Дмитрий Львович
  • Виноградов Алексей Юрьевич
RU2608969C1

Иллюстрации к изобретению RU 2 676 209 C9

Реферат патента 2018 года АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТИПА ДЕФЕКТА СТРУКТУРЫ ОБРАЗЦА ИЗ УГЛЕПЛАСТИКА

Использование: для неразрушающего контроля и технической диагностики композиционных материалов на основе углепластиков акустико-эмиссионным методом. Сущность изобретения заключается в том, что сначала на образец из углепластика в область концентратора напряжений устанавливают тензодатчики и преобразователи акустической эмиссии, а затем осуществляют акустико-эмиссионный контроль при ступенчатом статическом нагружении образцов первоначально до нагрузки, при которой тензодатчики фиксируют напряженно-деформированное состояние, соответствующее разрушению матрицы при растяжении и сжатии образца, затем до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению матрицы при растяжении и сжатии образца, затем до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению волокна. После каждого этапа нагружения проводят анализ формы сигналов акустической эмиссии из зоны локации, вычисляют структурные коэффициенты, строят их зависимости от нагрузки и судят о типе дефекта в образце: уменьшение структурного коэффициента соответствует разрушению матрицы, а его увеличение - разрушению волокна. Технический результат: обеспечение возможности определения типа дефекта в образцах из углепластика. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 676 209 C9

1. Акустико-эмиссионный способ определения типа дефекта структуры образца из углепластика, включающий установку на образец акустических преобразователей, работающих в режиме приема и излучения, калибровку, нагружение образца, прием, регистрацию и обработку сигналов акустической эмиссии, их оцифровку, фильтрацию помех, локацию сигналов акустической эмиссии в области дефекта, определение структурного коэффициента, по которому судят о типе дефектов, отличающийся тем, что на образец устанавливают тензодатчики в область концентратора напряжений, нагружение образца осуществляют первоначально до нагрузки, при которой тензодатчики фиксируют напряженно-деформированное состояние, соответствующее разрушению матрицы при растяжении и сжатии образца, после чего нагружение останавливают, проводят анализ формы сигналов акустической эмиссии из зоны локации и вычисляют структурный коэффициент, строят его зависимость от нагрузки, затем выполняют нагружение до нагрузки, при которой тензодатчиками фиксируют напряженно-деформированное состояние, соответствующее разрушению волокна, после чего нагружение останавливают, вычисляют структурный коэффициент, строят зависимости структурных коэффициентов от нагрузки и судят о типе дефекта в образце: уменьшение структурного коэффициента соответствует разрушению матрицы, а его увеличение - разрушению волокна.

2. Акустико-эмиссионный способ по п. 1, отличающийся тем, что тип повреждения образца определяют при текущем напряженно-деформированном состоянии по критериям дефектов в соответствии с выражениями

- растрескивание матрицы при растяжении образца (σy>0)

- растрескивание матрицы при сжатии образца (σy<0)

- разрыв волокна (σx>0)

где σx, σy, σxy, σyz, σxz - текущие нормальные и касательные напряжения в образце, возникающие в процессе нагружения;

Xt, Yt, Yc и Sxy, Syz, Sxz - значения пределов прочности на растяжение, сжатие и сдвиг,

а структурный коэффициент определяют из соотношения

где D2, D3 - коэффициенты детализации соответственно на частотах (250-500) кГц и (125-250) кГц.

Документы, цитированные в отчете о поиске Патент 2018 года RU2676209C9

Степанова Л.Н., Батаев В.А., Чернова В.В., Исследование разрушения образцов из углепластика при статическом нагружении с использованием методов акустической эмиссии и фрактографии, Дефектоскопия, 2017, N 6, с
Прибор для получения стереоскопических впечатлений от двух изображений различного масштаба 1917
  • Кауфман А.К.
SU26A1
АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ДИАГНОСТИРОВАНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ УГЛЕПЛАСТИКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Рамазанов Илья Сергеевич
  • Чернова Валентина Викторовна
RU2599327C1
МНОГОКАНАЛЬНОЕ АКУСТИКО-ЭМИССИОННОЕ УСТРОЙСТВО 2008
  • Степанова Людмила Николаевна
  • Кабанов Сергей Иванович
  • Лебедев Евгений Юрьевич
  • Ельцов Андрей Егорович
RU2396557C1
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2011
  • Королев Евгений Валерьевич
  • Смирнов Владимир Алексеевич
RU2471180C1
CN 202256264 U, 30.05.2012
JP 2015031630 A, 16.02.2015.

RU 2 676 209 C9

Авторы

Степанова Людмила Николаевна

Батаев Владимир Андреевич

Лапердина Наталья Андреевна

Чернова Валентина Викторовна

Даты

2018-12-26Публикация

2017-12-25Подача