АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС ИНЖЕКЦИИ РАСТВОРА ИНГИБИТОРА КОРРОЗИИ ДЛЯ СКВАЖИН Российский патент 2019 года по МПК E21B37/06 

Описание патента на изобретение RU2676779C2

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы.

Известна установка для дозированной подачи реагента (патент РФ №2238393, E21B 37/06, опубликовано 20.10.2004). Она содержит емкость для ингибитора, насос-дозатор, соединенный с ней посредством трубопровода через вентили, дополнительную емкость для ингибитора, устройство тонкой фильтрации, установленное непосредственно перед всасывающей частью насоса-дозатора, уровнемер, установленный в трубопроводе, соединяющем емкость для ингибитора и насос-дозатор. На трубопроводе, соединяющем емкость для ингибитора и насос-дозатор, установлены электроконтактный манометр, отсекающий вентиль и обратный клапан. Обратный клапан предотвращает обратное движение ингибитора при отсутствии в трубопроводе давления, создаваемого насосом-дозатором.

К недостаткам данного устройства следует отнести отсутствие дистанционного контроля технологических параметров и дистанционного управления установкой. В частности, отсутствие расходомера и возможности дистанционного управления производительностью насоса не позволяет регулировать подачу ингибиторов в технологические трубопроводы в зависимости от расхода среды, что приведет к нарушению технологического режима ингибирования.

Наиболее близким к заявленному техническому решению (прототипом), является установка для дозированной подачи жидкого химического реагента (патент РФ №2312208, E21B 37/06, опубликовано 10.12.2007), в состав которой входит технологическая емкость, соединенный с ней через запорный элемент насос-дозатор (основной и резервный), вмонтированный на линии подачи жидкости, выкидная линия которого соединена с технологической линией, снабженной расходомером, линия заправки технологической емкости, фильтр тонкой очистки, вентили, обратный клапан, манометр и указатель уровня.

Недостатками данного технического решения являются: применение частотного преобразователя для управления производительностью насоса -дозатора без дополнительных устройств, позволяющих адаптировать частотный преобразователь для работы на низких расходах, что приводит к перегрузкам электрического привода на низкой частоте вращения; отсутствие контроля раздела фаз и плотности реагента не позволяет контролировать его качество и соответственно контролировать технологический процесс в полном объеме; отсутствие контроля исправности сильфона, температуры двигателя и температуры насоса - дозатора не позволяет осуществлять контроль состояния и дистанционную диагностику насосного агрегата; отсутствие в выкидной линии насоса - дозатора гасителя пульсаций приведет к ложным срабатываниям электроконтактного манометра; применение косвенного метода измерения расхода подачи реагента не является достоверным; в примененном методе диагностики расходной характеристики насоса - дозатора отсутствует ограничение по минимальному времени откачки реагента и в случае повышенного расхода, из-за появления утечек, система управления не обнаружит аварийной ситуации и продолжит управление в штатном режиме; не предусмотрен сбор жидкости при возможных утечках в насосе и дистанционная сигнализация о появлении утечек; система круговой циркуляции, предназначенная для перемешивания, неэффективна в связи с возможностью ее использования только при прекращении основного процесса подачи и неправильной организацией забора, так как расслоение наиболее ярко выражено в верхней части емкости, а перемешивание производится только в ее нижней части.

Задача, на решение которой направлено заявляемое техническое решение, заключается в расширении арсенала технических средств в данной области, а также повышении надежности работы автоматизированного комплекса инжекции раствора ингибитора коррозии для подачи растворов в трубопроводы скважины под высоким давлением и эффективности использования ингибитора коррозии.

Поставленная задача решается тем, что автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин, включающий в себя локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора, оборудованную датчиком уровня и индикатором уровня для его визуальной оценки, соединенный с ней через фильтр тонкой очистки и запорную арматуру насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода.

Новым является то, что, с целью осуществления регулирования производительности насоса-дозатора от 0 до 100% рабочего диапазона и предотвращения перегрузок электрического двигателя плунжера насоса-дозатора на низких частотах вращения, обеспечивается комбинированным методом управления, основанным на регулировании дозируемого объема за счет изменения длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, причем управление частотным преобразователем и электрическим приводом плунжера насоса-дозатора осуществляют распределенной системой управления, построенной на контроллере автоматизированной системы управления технологическими процессами (далее - АСУ ТП) и на локальном промышленном контроллере автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин, обмен информацией между которыми осуществляют по оптоволоконной линии связи, при этом на базе локальной системы автоматизации автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин организуют систему сбора и передачи диагностической информации с оборудования, поддерживающего HART протокол (Highway Addressable Remote Transducer - Адресуемый дистанционный магистральный преобразователь), а насос-дозатор оборудуют датчиками исправности сильфона, температуры насоса-дозатора и температуры двигателя для контроля состояния и дистанционной диагностики насоса-дозатора.

Дополнительно автоматизированный комплекс инжекции раствора] ингибитора коррозии для скважин оснащен предохранительным клапаном для защиты оборудования от превышения максимально допустимого давления, гасителем пульсаций для стабилизации показаний манометра, массовым расходомером и датчиком давления, установленными в выкидной линии насоса - дозатора, при этом для перемешивания раствора ингибитора при его расслоении предусмотрен насос перемешивания, автоматически включающийся при обнаружении датчиком уровня раздела фаз жидкости, осуществляющий забор жидкости после фильтра тонкой очистки в подающем трубопроводе, и возвращающий жидкость в верхнюю часть технологической емкости для ингибитора, а также дренажной емкостью с сигнализатором предельного уровня, ручным перекачивающим насосом и дыхательным клапаном для сбора возможных утечек с насоса-дозатора, индикатора уровня, датчика давления и манометра.

Техническим результатом является повышение эффективности использования ингибитора коррозии и повышение надежности работы автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин в целом, за счет применения комбинированного метода управления, основанного на регулировании дозируемого объема изменением длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью j насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, позволяющего осуществлять управление производительностью во всем рабочем диапазоне насоса-дозатора с повышенной точностью, которую обеспечивает массовый расходомер, установленный в выкидной линии насоса-дозатора.

Представленный чертеж поясняет сущность изобретения, где схематически изображен заявляемый автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин (фиг.).

Автоматизированный комплекс инжекции раствора" ингибитора коррозии для скважин включает технологическую емкость для ингибитора 1, оборудованную индикатором уровня 2 с запорной арматурой 3, 4, 5, и датчиком уровня и раздела фаз 6, дыхательным клапаном 7, линией закачки ингибитора 8 с установленной на ней задвижкой. 9, дренажом с запорной арматурой 10, а также насосом перемешивания 11 с запорной арматурой 12 и обратным клапаном 13. Линия подачи раствора ингибитора 14 в технологический трубопровод 53 оснащена запорной арматурой 15, 16, фильтром тонкой очистки 17, насосом-дозатором 18 с дренажным вентилем 19, предохранительным клапаном 20, гасителем пульсаций 21, манометром 22 с приборным вентилем 23, датчиком давления 24 с приборным вентилем 25, датчиком расхода 26, обратным клапаном 27. Линия подачи раствора ингибитора 14 через запорную арматуру 28 соединяется с дренажной емкостью 29, оборудованной сигнализатором предельного уровня 30, ручным перекачивающим насосом 31 с запорной арматурой 32, дыхательным клапаном 33 и дренажным вентилем 34. В состав автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин входит локальная система управления 35, построенная на базе промышленного контроллера, которая обменивается информаций с контроллером скважины 36, и управляет производительностью насоса-дозатора 18 посредством частотного преобразователя 37 и электрического привода плунжера 38. Насос-дозатор 18 оснащен датчиком температуры двигателя 39, датчиком температуры насоса-дозатора 40, датчиком исправности сильфона 41, информация с которых поступает в локальную систему управления 35 и передается через конвертеры FX/TX 42, 43 по оптоволоконной линии 44 в АСУ ТП 45, элементы которого находятся в боксе управления 52. В шкафу управления 46 организована система сбора и передачи диагностической информации 47 с оборудования, поддерживающего HART протокол, для передачи данных через конвертеры FX/TX 48, 49 по оптоволоконной линии 50 в систему дистанционной диагностики и мониторинга КИП и А 51.

Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин работает следующим образом.

Заполнение технологической емкости для ингибитора 1 осуществляется обслуживающим персоналом с помощью специализированного автотранспорта, запорная арматура 3, 4, 9 находится в открытом состоянии, контроль уровня в технологической емкости для ингибитора 1 при заправке осуществляется визуально по индикатору уровня 2, при этом запорная арматура 5, 10, 28, 32, 34 закрыта. После заполнения технологической емкости для ингибитора 1 запорная арматура 9 переводится в закрытое состояние и ингибитор коррозии через фильтр 17 поступает на вход насоса-дозатора 18. Для пуска установки необходимо открыть запорную арматуру 12, 15, 16, 19, 23, 25 и подать команду на пуск со шкафа управления 46, находящегося на территории скважины во взрывоопасной зоне, или с АСУ ТП 45, элементы которого находятся в боксе управления 52, расположенном в безопасной зоне вне территории скважины. В соответствии с заданной производительностью насос-дозатор 18 подает ингибитор коррозии в технологический трубопровод 53 через обратный клапан 27 и открытую запорную арматуру 16. В выкидной линии насоса-дозатора 18 установлен предохранительный клапан 20, который в случае отказа автоматической системы защиты предотвратит повреждение технологического оборудования от превышения давления. Установленный после предохранительного клапана 20 гаситель пульсаций 21 позволит компенсировать пульсации в выкидной линии насоса-дозатора 18 и стабилизировать показания манометра 22, датчика давления 24 и датчика расхода 26. Для организации перемешивания жидкости в технологической емкости для ингибитора 1 предусмотрен насос перемешивания 11, который включается автоматически в случае обнаружения датчиком уровня и раздела фаз 6 расслоения ингибитора коррозии, насос перемешивания 11 осуществляет забор жидкости через запорную арматуру 12, установленную после фильтра тонкой очистки 17, и подает ее в верхнюю часть, емкости через обратный клапан 13.

Для организации сбора утечек, возникающих при обслуживании автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин или в случае возникновения нештатных утечек в насосе-дозаторе 18, предусмотрена дренажная емкость 19, в которую поступает ингибитор коррозии через запорную арматуру 5, 19, 23, 25, 28. При заполнении дренажной емкости 29 срабатывает сигнализатор предельного уровня 30 и формирует предупредительный сигнал о необходимости откачки ингибитора, который отображается на пульте локальной системы управления 35 и передается в систему АСУ ТП 45. Ингибитор коррозии из дренажной емкости 29 откачивается ручным перекачивающим насосом 31 в верхнюю часть технологической емкости для ингибитора 1 через запорную арматуру 32.

Информация с датчика уровня и раздела фаз 6, сигнализатора предельного уровня 30, датчика давления 24, датчика расхода 26, датчика температуры двигателя 39, датчика температуры насоса-дозатора 40, датчика исправности сильфона 41 поступает в локальную систему управления 35, которая на основании полученных данных формирует управляющие воздействия на электроприводы в соответствии с алгоритмами аварийной защиты, транслирует данные через конвертеры FX/TX 42, 43 по оптоволоконной линии 44 в АСУ ТП 45, а также управляет производительностью насоса-дозатора 18 на основании норм расхода ингибитора коррозии в зависимости от расхода продукции скважин.

Данные о расходе продукции поступают в локальную систему управления 35 с контроллера скважины 36, контроллер локальной системы управления 35 рассчитывает необходимое количество ингибитора коррозии и формирует управляющие воздействия комбинированным способом на электрический привод плунжера 38 насоса-дозатора 18 и частотный преобразователь 37 в зависимости от измеренного мгновенного расхода ингибитора коррозии.

Управление производительностью насоса-дозатора 18 комбинированным способом необходимо для осуществления регулирования от 0 до 100% рабочего диапазона и предотвращения перегрузок электрического двигателя насоса-дозатора 18 на низких частотах вращения. Комбинированный способ заключается в управлении производительностью насоса-дозатора 18 посредством частотного преобразователя 37 в диапазоне от 25 до 50 Гц подаваемого напряжения на электрический двигатель насоса-дозатора 18. При необходимости осуществлять регулирование производительности в более низком диапазоне (ниже 25 Гц), локальная система управления 35 производит регулировку впрыскиваемого объема (в сторону уменьшения) за счет изменения длины хода плунжера насоса-дозатора 18 отдельно установленным электрическим приводом плунжера 38, таким образом, чтобы частота электропитания электрического двигателя насоса-дозатора 18 находилась в диапазоне регулирования от 25 до 50 Гц. Например, при максимальном расходе насоса-дозатора 18 длина хода плунжера насоса-дозатора 18 составляет 100%, частота электропитания 50 Гц. При уменьшении расхода и достижении частоты 25 Гц электрический привод плунжера 38 изменяет длину хода плунжера на 50%, что соответствует половине максимальной производительности насоса-дозатора 18, а частотный преобразователь 37 повышает частоту электропитания электрического двигателя насоса-дозатора 18 от 25 до 50 Гц. В результате насос-дозатор 18 остается в нужном диапазоне регулирования расхода при частоте электропитания электрического двигателя насоса-дозатора 18 в диапазоне от 25 до 50 Гц.

АСУ ТП 45 осуществляет диагностику работоспособности локальной системы управления 35 и в случае появления критических неисправностей контроллер скважины 36 берет управление подачей ингибитора коррозии на себя и управляет частотным преобразователем 37 по табличным зависимостям «дебит скважины» / «частота электропитания электрического двигателя насоса-дозатора 18».

Для дистанционного контроля и диагностики состояния интеллектуального оборудования, поддерживающего HART протокол, в шкафу управления 46 организована система сбора и передачи диагностической информации 47, которая передает данные в систему дистанционной диагностики и мониторинга КИП и А 51 через конвертеры FX/TX 48, 49 по оптоволоконной линии 50.

Похожие патенты RU2676779C2

название год авторы номер документа
АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС УПРАВЛЕНИЯ КРАНОМ НА ГАЗОКОНДЕНСАТОПРОВОДЕ 2019
  • Рылов Николай Евгеньевич
  • Свиридов Анатолий Георгиевич
  • Панащенко Дмитрий Константинович
RU2718101C1
УСТАНОВКА ДЛЯ ДОЗИРОВАННОЙ ПОДАЧИ РАСТВОРА ИНГИБИТОРА КОРРОЗИИ В ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2019
  • Александров Вячеслав Владимирович
  • Шепитяк Роман Романович
  • Юсупов Александр Дамирович
  • Москаленко Владислав Викторович
RU2726714C1
УЧЕБНЫЙ ТРЕНАЖЕРНЫЙ КОМПЛЕКС "АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ И ТЕПЛОТЕХНИЧЕСКИЙ КОНТРОЛЬ" 2009
  • Грунин Анатолий Петрович
  • Бабкин Юрий Александрович
  • Карпов Алексей Михайлович
  • Дергачев Владимир Петрович
  • Нечай Владимир Алексеевич
RU2433482C2
СПОСОБ ИНГИБИРОВАНИЯ СКВАЖИН 2019
  • Екотов Андрей Геннадиевич
  • Рылов Николай Евгеньевич
  • Тимербулатов Аскар Рамазанович
  • Малышев Дмитрий Анатольевич
  • Леонтьев Иван Николаевич
  • Пичугин Дмитрий Алексеевич
  • Идиатулин Сергей Александрович
  • Сережников Алексей Петрович
  • Поляков Игорь Генрихович
RU2728015C1
УСТАНОВКА ДЛЯ ДОЗИРОВАННОЙ ПОДАЧИ ЖИДКОГО ХИМИЧЕСКОГО РЕАГЕНТА 2006
  • Хазиахметов Ренат Саниахметович
  • Федотов Геннадий Аркадьевич
  • Залятдинов Булат Файзханович
  • Казимаслов Денис Леонидович
RU2312208C1
УСТАНОВКА ДОЗИРОВАНИЯ РЕАГЕНТА 2021
  • Гладунов Олег Владимирович
  • Орлов Михаил Игоревич
  • Попов Николай Петрович
  • Ртищев Анатолий Владимирович
  • Козлов Александр Сергеевич
  • Кавтаськин Антон Николаевич
  • Конышев Дмитрий Владимирович
  • Кочуров Олег Михайлович
  • Ильин Алексей Владимирович
RU2776881C1
ИНТЕРАКТИВНЫЙ ОБУЧАЮЩИЙ КОМПЛЕКС, ИМИТИРУЮЩИЙ РАБОТУ СКВАЖИНЫ 2018
  • Андреев Александр Александрович
  • Белый Александр Алексеевич
  • Логовиков Олег Витальевич
  • Разгонов Михаил Анатольевич
  • Репин Кирилл Геннадьевич
  • Свиридов Анатолий Георгиевич
  • Шевченко Максим Алексеевич
RU2675477C1
Мобильная насосная установка для дозированной подачи химических реагентов 2022
  • Шаяхметов Рустам Ринатович
  • Галиев Радиль Амляхович
RU2783949C1
УСТРОЙСТВО ДОЗИРОВАНИЯ ИНГИБИТОРА КОРРОЗИИ И ГИДРАТООБРАЗОВАНИЯ 2022
  • Николаев Олег Александрович
  • Ларёв Павел Николаевич
  • Дрошнев Вадим Александрович
  • Филимонов Сергей Николаевич
RU2804451C1
СПОСОБ УПРАВЛЕНИЯ ФОНТАННОЙ АРМАТУРОЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Гриценко Владимир Дмитриевич
  • Лачугин Иван Георгиевич
  • Чагин Сергей Борисович
  • Черниченко Владимир Викторович
  • Шевцов Александр Петрович
RU2596175C1

Иллюстрации к изобретению RU 2 676 779 C2

Реферат патента 2019 года АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС ИНЖЕКЦИИ РАСТВОРА ИНГИБИТОРА КОРРОЗИИ ДЛЯ СКВАЖИН

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы. Комплекс содержит локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора с датчиком уровня и индикатором уровня, фильтр тонкой очистки, насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода. Регулирование насоса-дозатора основано на регулировании дозируемого объема изменением длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя. Управление осуществляют распределенной системой, построенной на контроллере автоматизированной системы управления технологическими процессами и на локальном промышленном контроллере, обмен информацией между которыми осуществляют по оптоволоконной линии связи, что позволяет организовать дистанционный контроль и диагностику комплекса. Повышается эффективность использования ингибитора коррозии и надежность работы. 6 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 676 779 C2

1. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин, включающий локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора, оборудованную датчиком уровня и индикатором уровня для его визуальной оценки, соединенный с ней через фильтр тонкой очистки и запорную арматуру насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода, отличающийся тем, что регулирование производительности насоса-дозатора от 0% до 100% рабочего диапазона и предотвращение перегрузок электрического двигателя насоса-дозатора на низких частотах вращения обеспечивается комбинированным методом управления, основанным на регулировании дозируемого объема за счет изменения длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, причем управление частотным преобразователем и электрическим приводом плунжера насоса-дозатора осуществляют распределенной системой управления, построенной на контроллере автоматизированной системы управления технологическими процессами (АСУ ТП) и на локальном промышленном контроллере автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин, обмен информацией между которыми осуществляют по оптоволоконной линии связи, при этом на базе локальной системы автоматизации автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин организуют систему сбора и передачи диагностической информации с оборудования, поддерживающего HART протокол (Highway Addressable Remote Transducer -Адресуемый дистанционный магистральный преобразователь), а насос-дозатор оборудуют датчиками исправности сильфона, температуры насоса-дозатора и температуры двигателя для контроля состояния и дистанционной диагностики насоса-дозатора.

2. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для защиты оборудования от превышения максимально допустимого давления применяют предохранительный клапан.

3. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для стабилизации показаний манометра, массового расходомера и датчика давления выкидную линию насоса-дозатора оснащают гасителем пульсаций.

4. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для организации учета подачи жидкости в выкидной линии насоса устанавливают массовый расходомер.

5. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для алгоритма защиты и дистанционного контроля на линии подачи раствора ингибитора после насоса-дозатора устанавливают датчик давления.

6. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для перемешивания раствора ингибитора при его расслоении устанавливают насос перемешивания, автоматически включающийся при обнаружении датчиком уровня раздела фаз жидкости, осуществляющий забор жидкости после фильтра тонкой очистки в подающем трубопроводе и возвращающий жидкость в верхнюю часть технологической емкости для ингибитора.

7. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для сбора возможных утечек с насоса-дозатора, индикатора уровня, датчика давления и манометра устанавливают дренажную емкость, оснащенную сигнализатором предельного уровня, ручным перекачивающим насосом и дыхательным клапаном.

Документы, цитированные в отчете о поиске Патент 2019 года RU2676779C2

УСТАНОВКА ДЛЯ ДОЗИРОВАННОЙ ПОДАЧИ ЖИДКОГО ХИМИЧЕСКОГО РЕАГЕНТА 2006
  • Хазиахметов Ренат Саниахметович
  • Федотов Геннадий Аркадьевич
  • Залятдинов Булат Файзханович
  • Казимаслов Денис Леонидович
RU2312208C1
Плавучая опора для перевозки пролетных строений мостов 1959
  • Александровский Б.А.
  • Дудченко Н.П.
  • Каменцев В.П.
  • Семенченко Е.Ф.
SU128894A1
Устройство для испытания на герметичность полых изделий 1946
  • Благовещенский Я.А.
SU78516A1
Чиститель хлопка-сырца 1960
  • Бикбаев А.Ф.
  • Захаров И.Я.
SU137327A1
Автоматический затвор для двухстворчатых шахтных дверей подъемников 1931
  • Помазан А.Д.
SU23264A1
CN 205532495 U, 31.08.2016
WO 2017089846 A1, 01.06.2017.

RU 2 676 779 C2

Авторы

Кожакин Владимир Васильевич

Екотов Андрей Геннадиевич

Свиридов Анатолий Георгиевич

Панащенко Дмитрий Константинович

Родованов Виталий Евгеньевич

Даты

2019-01-11Публикация

2017-06-21Подача