Изобретение относится к созданию материала для оптико-магнитной записи информации повышенной плотности на основе диамагнитной матрицы - кварцевого стекла, характеризующегося высокими физико-химическими показателями, с равномерно распределенными парамагнитными нанокластерами.
Для записи и хранения цифровой информации на начальных стадиях развития информационной техники использовались различного вида магнитные носители, для получения которых на немагнитную подложку (картон, стекло, керамика, ситалл. пластик и т.д.) наносился слой магнитного материала, на который производилась запись. Так в авт. свид. SU 771718, (кл. G11C 11/14, приоритет от 16.11.1979) в качестве немагнитной подложки предлагалось использование стеклянной пластины, на которую наносился магнитный материал. Для изготовления носителя магнитной аудиозаписи в качестве немагнитной подложки предлагалось использование гибкой диэлектрической основы, на которую в атмосфере азота напылялся подслой InGa толщиной 10-20 нм, а затем магнитная пленка FeNi толщиной 30-50 нм (авт. свид. SU 1777171, кл. G11B 5/84, приоритет от 30.11.1990). При создании магнитного материала (среды для магнитной записи) возможно использование либо полимерного покрытия, содержащего магнитные однодоменные частицы (обычно γ-Fe03) с размером порядка 100 нм, либо тонкой (толщиной 50-150 нм) пленки магнитного металла, сплава или оксида (обычно используются сплавы на основе Со, например Co-Ni, Co-Ni-W, Co-Pt-Ni и т.д. (Magnetic recording. Ed. C.D. Mee and E.D. Daniel. McGraw Hill, 1995).
Недостатками этих методов являются довольно сложный технологический процесс, включающий много промежуточных этапов, и относительно большой размер сформированных магнитных частиц, резко ограничивающий плотность магнитной записи.
Для решения проблемы повышения плотности записи необходимо уменьшение размеров магнитных частиц или зерен в пленке до размеров порядка 10 нм и ниже, что само по себе представляет сложную технологическую задачу. Для этого в патенте RU 2227941 (МПК H01F 10/08; G11B 5/714, приоритет от 07.06.2001) данная задача решается тем, что в качестве объектов, на которых осуществляется запись информации, предлагается использовать наноразмерные области (кластеры) с отличным от основной матрицы магнитным состоянием, образующиеся в результате введения в матрицу примесей или дефектов. Примеси или дефекты вводятся в магнитную матрицу, представляющую собой пленку, непосредственно в процессе ее формирования и распределяются в ней равномерно.
Интерес исследователей к магнитным носителям информации не ослабевает и в настоящее время. Так в одном из последних патентов RU 2635254 (МПК С08K 3/04; В82В 3/00, приоритет от 15.03.2016) разработан нанокомпозитный магнитный материал для модулей памяти на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4, закрепленных на одностенных углеродных нанотрубках. Нанокомпозитный магнитный материал, включающий полимер и наночастицы Fe3O4, отличается тем, что материал дополнительно содержит одностенные углеродные нанотрубки ОУНТ, на которых закреплены наночастицы Fe3O4, а в качестве полимера используют поли-3-амино-7-метиламино-2-метилфеназин ПАММФ при содержании в материале наночастиц Fe3O4 1-70 мас. % от массы ПАММФ и ОУНТ 1-10 мас. % от массы мономера. Недостатком данного решения является использование не достаточно стабильного полимера и дорогих углеродных нанотрубок.
Среди современных материалов, используемых для записи и хранения информации, наибольшее распространение получили оптические носители информации, так, например, компакт - диск представляет собой поликарбонатную подложку, покрытую тонким слоем металла (Al, Ag, Au), далее защитным слоем из лака. Информация записывается в виде спиральных дорожек из углублений или питов, выдавленных в полимере. Ширина пита - 500 нм, глубина - 100 нм. Считывание производится с помощью лазера.
Важной проблемой при разработке оптического носителя информации является увеличение его объема памяти. Так для решения этой задачи в патенте RU 2161337 (МПК G11B 7/00; G11B 11/12, приоритет от 08.09.1999) предлагается материал на основе монокристаллического фторида кадмия, легированного галлием, который для увеличения объема записи информации и улучшения ее качества дополнительно легирован иттрием, скандием или гадолинием.
В патенте RU 2429256 (МПК C08L 33/08; C08L 33/10; С08K 3/08 G03C 1/725, приоритет от 18.12.2009) для плотной записи информации предлагается золотосодержащая способная к полимеризации акриловая композиция, которая при фотооблучении в результате параллельно протекающих процессов фотополимеризации акрилатов и фотовосстановлении ионов золота образует пространственно-сетчатый полимерный материал, содержащий растворенное золото в нулевой валентности, в котором при последующем фотовоздействии генеририруется полоса плазменного резонанса в видимой области спектра 500-640 нм образующихся наночастиц золота. Материал является регистрирующей средой для оптической записи информации и отличается чрезвычайно высокой чувствительностью.
Недостатком используемых и предлагаемых в патентах полимерных материалов является их недостаточная надежность сохранности информации, неустойчивость к высоким температурам и внешним тепловым и световым воздействиям, т.е. помимо проблемы увеличения объема памяти еще одной важной проблемой является долговечность сохранения информации.
Материал носителя определяет срок долговечности хранения информации. Так магнитные диски и флеш-память надежно сохраняют данные лишь несколько лет и неустойчивы к сильным электромагнитным полям и температуре выше 100°С. Большинство оптических дисков представляют собой соединенные между собой слои пластика и способны хранить данные от 3 до 20 лет, хотя по данным разработчиков, средний срок хранения информации на наиболее популярных носителях данных - жестких дисках - HDD/SSD -50 лет, на оптических дисках - CD/DVD/ Blu-Ray не более 60 лет. Информация постепенно стирается под действием температуры выше 50-70°С и солнечного света.
Революционным шагом в области создания носителей информации является разработка в последние годы диска высокоплотной памяти на основе наноструктурированного кварцевого стекла, которое выдерживает высокую температуру до 1000°С, устойчиво к агрессивным средам и к термоудару и, по мнению разработчиков, сохранность информации на таком диске исчисляется миллионнами лет. Теоретической предпосылкой для создания нового поколения носителей информации явилось открытие в 2003 г. группой ученых из Японии, Китая и Великобритании (Shimatsuma Y., Kazansky P.G., Qui J.R., Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 2003. №91. P. 247405) того факта, что при определенных режимах обработки стекла лазерным пучком в нем возникает новый тип наноструктур, так называемые нанорешетки, в которых наблюдается чередование областей с различным показателем преломления, одни области представляют собой неизменное кварцевое стекло, другие-материал с наноразмерными порами, что обуславливает анизотропию оптических свойств и открывает возможность использования нанорешеток для высокоплотной записи информации в кварцевом стекле. В 2012 г. такой тип носителя информации был создан в Японии фирмой Hitachi в виде диска размером 2×2 см толщиной 2 мм на основе кварцевого стекла, запись производилась с помощью импульсного лазера. Плотность записи, производимой в 4 слоя, составляла 40 мегабайт на кв. дюйм.
Наиболее близким к предлагаемому по своей технической сущности является носитель информации на основе наноструктурированного кварцевого стекла, созданного в России (Глебов И., Лотарев С., Сигаев В. В поисках вечной памяти: от клинописи на глине к наноструктурам в стекле. Журнал «Коммерсантъ. Наука» №4 (http://kommersant.ru/nauka/110409) от 20.06.2017. стр. 29). Отличие состоит в способе наноструктурирования. В прототипе структурирование с образованием нанорешеток, представляющих собой нанопоры в объеме кварцевого стекла, происходит под действием излучения фемтосекундного лазера, генерирующего сверхкороткие длительностью в десятки или сотни фемтосекунд световые импульсы со сверхвысокой пиковой мощностью. Значительное увеличение плотности записи информации становится возможным благодаря тому, что в одну нанорешетку можно записывать несколько бит информации.
В силу высокой стоимости таких носителей, необходимости наличия фемтосекундного лазера, сложной технологии записи, отсутствия возможности тиражирования дисков, их рыночная ниша - архивное хранение особо важной информации, это военные организации, архивы, библиотечные, музейные фонды, госструктуры, инженерные, научные хранилища.
Технической задачей заявляемого изобретения является создание доступного широкому рынку долговечного материала для записи информации повышенной плотности, а также упрощение процесса получения такого материала.
Задача решается тем, что материал для записи информации повышенной плотности включает наноструктурированное кварцевое стекло, наноструктуры которого содержат парамагнитные нанокластеры, имеющие размеры, до десятка ангстрем, состоящие из собственных дефектов структуры кварцевого стекла, примесей и введенных парамагнитных ионов элементов переходных групп, подвергнутых воздействию ионизирующего излучения и равномерно распределенных в его объеме.
В исходном состоянии кварцевое стекло является диамагнитнитным материалом, но его можно перевести в класс магнитных носителей двумя способами:
- воздействием на кварцевое стекло ионизирующим излучением (жесткого УФ, γ-лучей или рентгеновского излучения), в результате чего имеющиеся в кварцевом стекле собственные дефекты структуры перейдут в парамагнитное состояние;
- легированием кварцевого стекла оксидами элементов переходных групп.
В основе аргументированности первого способа лежат результаты проведенных автором исследований методом ЭПР (электронный парамагнитный резонанс) природных разновидностей кварца и облученных кварцевых стекол. Для многих видов образцов кристаллического кварца были получены спектры ЭПР с набором резонансных линий (фиг. 1), свидетельствующих о имеющихся в природном кварце парамагнитных примесях и дефектах структуры.
В табл. 1 приведены параметры некоторых резонансных линий ЭПР различного вида собственных дефектов структуры кварца, образовавшихся в природе при росте кристаллов из термального раствора и подвергшихся последующему облучению внешними источниками жесткого волнового излучения.
Аналогичные спектры ЭПР наблюдаются в кварцевых стеклах, но только после воздействия на них ионизирующим излучением. Это означает, что в исходном кварцевом стекле присутствуют диамагнитные собственные дефекты вида - [SiO4]0, [SiO3]2- и [RO4]0. Под воздействием ионизирующего излучения они преобразуются, на их основе, как и в кристаллическом кварце, образуются наведенные дефекты вида: [SiO4]+, [SiO3]- и [RO4]+. Эти наведенные дефекты парамагнитны.
Легирование кварцевого стекла оксидами элементов переходной группы также приводит к возможности получения диамагнитной матрицы с равномерно распределенными нанокластерами парамагнитной природы, образующимися в силу d-d взаимодействия переходных элементов. Параметры спектров ЭПР некоторых из них приведены в табл. 2 (см ниже).
Ниже приведены примеры спектров ЭПР кварцевого стекла с различными видами парамагнитных дефектов, возникающих под действием различных видов ионизирующего излучения, и кварцевого стекла с различными парамагнитными ионами.
Пример 1.
Промышленное кварцевое стекло было подвергнуто γ - облучению при 77° К. Съемка спектра ЭПР была проведена на радиоспектрометре фирмы Bruker при 293°К. На приведенной фиг. 2 в γ-облученном кварцевом стекле наблюдаются две линии поглощения: первая - узкая (ΔН=10 гс) и g=2,01 обязана дырочному парамагнитному дефекту на немостиковом атоме кислорода тетраэдра [SiO4]+, вторая, более узкая, ((ΔН=4 гс) и g=2,00 принадлежит захваченному электрону на атоме кремния в дефекте [SiO3]-.
Пример 2.
Промышленное кварцевое стекло, содержащее примеси, было подвергнуто γ-облучению при 77° К дозой 1 мрд. Съемка спектра ЭПР была проведена на радиоспектрометре фирмы Bruker при 293° К. На приведенной фиг. 3 в γ - облученном кварцевом стекле наблюдается расщепление линии с g=2,01 на 6 компонент с Aстс=10 гс. Это тетраэдр кремнекислородной сетки, в которой Si замещен на Аl-[AlO4]+ - центр.
Пример 3.
Промышленное кварцевое стекло было подвергнуто УФ-облучению при 77°К. Спектр ЭПР записан при 293°К. Он принадлежит двум электронным дефектам [SiO3]- отличающимся симметрией локального окружения в парамагнитном кластере.
Из приведенных примеров следует, что под действием γ - и УФ-облучения в кварцевом стекле образуются парамагнитные центры на основе собственных дефектов структуры и имеющихся в стекле примесей.
Парамагнитные нанокластеры в исходном и облученном кварцевом стекле можно создать путем введения в него при синтезе оксидов элементов переходных групп, примеры спектров ЭПР некоторых из них в кварцевом стекле приведены в табл. 2.
Совокупность наведенных парамагнитных дефектов и центров намагниченности на основе парамагнитных ионов, представляющих собой наноразмерные кластеры, при последующем возбуждении в УФ области проявляют широкополосную рекомбинационную люминесценцию в видимой части спектра в области 350-600 нм (фиг. 5).
Приведенные данные являются свидетельством того, что предлагаемый материал на основе наноструктурированного кварцевого стекла, содержащего парамагнитные нанокластеры размером до десятка ангстрем, включающие собственные дефекты структуры кварцевого стекла, а также примеси и введенные парамагнитные ионы элементов переходных групп, подвергнутые воздействию ионизирующего излучения и равномерно распределенные в его объеме, относится к магнитооптическим материалам и может являться регистрирующей средой для магнитной или оптической записи информации, поскольку при последующем воздействии на нее внешних факторов (повышения температуры или возбуждающего излучения), инициируются процессы изменения ее намагниченности и электронного состояния.
Преимуществом предлагаемого материала является то, что, как и в прототипе, используется кварцевое стекло, обладающее высокими физико-химическими свойствами, определяющими его долговечность и защиту информации, а требуемое для записи информации наноструктурирование стекла обеспечивается созданием парамагнитных нанокластеров, включающих в первую очередь собственные дефекты его структуры, примеси, а также введенные парамагнитные ионы при условии воздействия на них внешним ионизирующим излучением. Это доступнее и проще, чем создание нанорешетки в виде нанопор воздействием фемтосекундным лазером. Кроме того нанопоры могут ослаблять структуру стекла и приводить к уменьшению его прочности. Преимуществом предлагаемой в данном изобретении регистрирующей среды является также возможность направленного изменения ее магнитооптических свойств за счет изменения природы парамагнитной добавки, ее концентрации, а также вида и дозы ионизирующего излучения, изменяющего вид и количество дефектов в материале. Объемный характер их распределения обеспечит возможность записи информации повышенной плотности. Более простая технология приведет к большей доступности носителя на широком рынке при долговременном сохранении информации и повышенной плотности записи.
Подписи к рисункам к заявке
Материал на основе кварцевого стекла для записи информации повышенной плотности
Фиг. 1 - Спектр ЭПР природного кварца
Фиг. 2 - Кварцевое стекло γ-облученное при 77°К (D=1 мрд), съемка спектра ЭПР при 293°К.
Фиг. 3 - Кварцевое стекло с примесью Аl3+, γ-облученное при 77°К (D=1 мрд), сьемка спектра ЭПР при 293°К.
Фиг. 4 - Спектр ЭПР УФ-облученного кварцевого стекла при 77°К.
Фиг. 5 - Спектр рентгенолюминесценции кварцевого стекла КС (1) и спектр фотостимулированной люминесценции при воздействии на облученный образец светом длиной волны 2,15 эВ (2)
Подписи к таблицам к заявке
Материал на основе кварцевого стекла для записи информации повышенной плотности
Таблица 1 - Параметры спектров ЭПР некоторых видов собственных дефектов структуры в различных разновидностях кристаллического кварца
Таблица 2 - Параметры спектров ЭПР некоторых переходных элементов в кварцевом стекле
Таблицы к заявке
Материал на основе кварцевого стекла для записи информации повышенной плотности
название | год | авторы | номер документа |
---|---|---|---|
Геохимический способ поиска месторождений углеводородов | 2017 |
|
RU2675415C1 |
СПОСОБ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ИНФОРМАЦИИ | 2012 |
|
RU2510084C1 |
СПОСОБ ФОРМИРОВАНИЯ МАГНИТНОГО МАТЕРИАЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ С ВЫСОКОЙ ПЛОТНОСТЬЮ | 2001 |
|
RU2227941C2 |
Способ ретроспективной оценки поглощенных доз гамма-излучения по образцам сенсорных экранов смартфонов при аварийных радиологических ситуациях | 2024 |
|
RU2821988C1 |
СПОСОБ ОЦЕНКИ КАЧЕСТВА КВАРЦЕВОГО СЫРЬЯ | 2012 |
|
RU2525681C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУИРОВАННЫХ СЛОЕВ МАГНИТНЫХ МАТЕРИАЛОВ НА КРЕМНИИ ДЛЯ СПИНТРОНИКИ | 2012 |
|
RU2522956C2 |
СПОСОБ ПОЛУЧЕНИЯ ИМПЛАНТИРОВАННОГО ИОНАМИ ОЛОВА КВАРЦЕВОГО СТЕКЛА | 2011 |
|
RU2486282C1 |
Способ дозиметрии фотонных и корпускулярных ионизирующих излучений | 2022 |
|
RU2792633C1 |
Оптический носитель информации на основе оксидных стекол | 2019 |
|
RU2713044C1 |
Способ определения концентрации таллия | 1988 |
|
SU1589170A1 |
Использование: для оптико-магнитной записи информации повышенной плотности. Сущность изобретения заключается в том, что материал для записи информации повышенной плотности включает наноструктурированное кварцевое стекло, в котором наноструктуры содержат парамагнитные нанокластеры, имеющие размеры до десятка ангстрем, состоящие из собственных дефектов структуры кварцевого стекла, примесей и введенных парамагнитных ионов элементов переходных групп, подвергнутых воздействию ионизирующего излучения и равномерно распределенных в его объеме. Технический результат: обеспечение возможности долговечности материала для записи информации повышенной плотности, а также упрощение процесса получения материала. 3 з.п. ф-лы, 5 ил., 2 табл.
1. Материал для записи информации повышенной плотности, включающий наноструктурированное кварцевое стекло, отличающийся тем, что наноструктуры в кварцевом стекле содержат парамагнитные нанокластеры, имеющие размеры до десятка ангстрем, состоящие из собственных дефектов структуры кварцевого стекла, примесей и введенных парамагнитных ионов элементов переходных групп, подвергнутых воздействию ионизирующего излучения и равномерно распределенных в его объеме.
2. Материал по п. 1, собственные дефекты которого содержат электронные дефекты вида [SiO3]-, дырочные дефекты вида [SiO4]+ и [RO4]+.
3. Материал по п. 1, в состав которого вводят парамагнитные ионы элементов переходных групп (Cu, Fe, Mn, Ti, Со, Cr).
4. Материал по п. 1, нанокластеры которого подвергают воздействию жесткого УФ-излучения, или γ-лучей, или рентгеновского излучения.
СПОСОБ ФОРМИРОВАНИЯ МАГНИТНОГО МАТЕРИАЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ С ВЫСОКОЙ ПЛОТНОСТЬЮ | 2001 |
|
RU2227941C2 |
Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и способ его получения | 2016 |
|
RU2635254C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТНОГО НОСИТЕЛЯ | 2000 |
|
RU2169398C1 |
WO 2006118677 A4, 09.11.2006 | |||
WO 2007111149 A1, 04.10.2007. |
Авторы
Даты
2019-01-29—Публикация
2018-02-12—Подача