Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станций радиотехнической разведки и активных помех Российский патент 2019 года по МПК G01S13/52 

Описание патента на изобретение RU2679597C1

Изобретение относится к области радиолокации и может быть использовано для повышения помехозащищенности импульсно-доплеровской бортовой радиолокационной станции (БРЛС) при ее работе на излучение и обнаружении воздушной цели - носителя станций радиотехнической разведки (РТР) и активных помех.

Известен способ функционирования импульсно-доплеровской БРЛС, заключающийся в формировании высокочастотной последовательности зондирующих импульсов, их усилении по мощности, излучении в пространство, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом [1].

Недостатком данного способа является невозможность с его помощью всегда обеспечить помехозащищенность БРЛС при ее работе на излучение при обнаружении воздушной цели - носителя станций РТР и активных помех с постановкой их со стороны станции активных помех (САП) эффективной помехи на несущей частоте зондирующего сигнала, структура и параметры которого могут быть распознаны станцией РТР в случае необеспечения скрытности работы БРЛС на излучение.

Так, с одной стороны, дальность DБРЛС обнаружения цели - носителя станций РТР и активных помех с помощью импульсно-доплеровской БРЛС определяется выражением [1]

где

Рбрлс - средняя излучаемая мощность передатчика;

Ткн - время когерентного накопления сигнала в приемнике, равное времени облучения воздушной цели - носителя станций РТР и активных помех;

Gбрлс - коэффициент направленного действия передающей антенны;

Sa - эффективная площадь приемной антенны;

σртр - эффективная поверхность отражения воздушной цели - носителя станций РТР и активных помех;

αп - коэффициент потерь энергии сигнала при его обработке;

N0 - спектральная плотность внутренних шумов приемника;

R0 - отношение энергии сигнала к спектральной плотности шума, при котором с заданной вероятностью обеспечивается обнаружение воздушной цели - носителя станций РТР и активных помех.

С другой стороны, максимальная дальность обнаружения DPTP станцией РТР излученного БРЛС высокочастотного зондирующего сигнала определяется выражением [2]

где

Gртр - коэффициент направленного действия приемной антенны станции РТР;

λбрлс - длина волны БРЛС;

Рртр - максимальное значение чувствительности приемника станции РТР.

При этом, возможны две ситуации. Первая ситуация, когда дальность обнаружения излученного БРЛС сигнала станцией РТР превышает или равнадальности обнаружения БРЛС носителя станций РТР и активных помех, то есть DPTP≥DБРЛС Вторая ситуация, когда дальность обнаружения БРЛС воздушной цели - носителя станций РТР и активных помех превышает дальность обнаружения станцией РТР излученного БРЛС зондирующего сигнала, то есть ББРЛС≥DPTP.

Следовательно, в первом случае скрытность работы БРЛС на излучение не обеспечивается и с помощью станции РТР будет распознана структура и параметры зондирующего сигнала, что позволит поставить БРЛС с помощью САП эффективную помеху на данной несущей частоте.

Во втором случае скрытность работы БРЛС на излучение будет обеспечена, что не позволит распознать станцией РТР структуру и параметры зондирующего сигнала, а следовательно поставить эффективную помеху на данной несущей частоте.

Поэтому, для обеспечения постоянства скрытности работы БРЛС на излучение, а следовательно и помехозащищенности БРЛС в целом, при обнаружении воздушной цели - носителя станций РТР и активных помех, необходимо постоянно контролировать и поддерживать условие

Известен способ функционирования импульсно-доплеровской БРЛС при обнаружении воздушной цели - носителя станции РТР, заключающийся в формировании высокочастотной последовательности зондирующих импульсов на постоянной несущей частоте, их усилении по мощности, излучении в направлении воздушной цели - носителя станции РТР, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом, при этом дальность DБРЛС обнаружения воздушной цели - носителя станции РТР определяется выражением (1), причем, при каждом приеме сигнала, отраженного от воздушной цели - носителя станции РТР, измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DPTP станцией РТР излученного БРЛС высокочастотного зондирующего сигнала, определяемой выражением (2), при выполнении условия (3) принимают решение о том, что скрытность БРЛС при ее работе на излучение на данной несущей частоте зондирующего сигнала обеспечена и станция РТР не обнаруживает и не распознает структуру и параметры излученного БРЛС зондирующего сигнала, при этом, средняя излучаемая мощность Рбрлс передатчика, время облучения воздушной цели - носителя станции РТР и время Ткн когерентного накопления сигнала в приемнике БРЛС остаются неизменными, если условие (3) не выполняется, то одновременно увеличивают в n раз, где n - целое или дробное число, большее единицы, время облучения воздушной цели - носителя станции РТР и время Ткн когерентного накопления сигнала в приемнике БРЛС и уменьшают в n раз среднюю излучаемую мощность Рбрлс передатчика БРЛС до тех пор, пока не будет выполнено условие (3), которое свидетельствует об обеспечении скрытности работы БРЛС на излучение [3].

Недостатком данного способа является невозможность с помощью его всегда обеспечить помехозащищенность работы БРЛС на излучение. Это обусловлено тем, что при не выполнении условия (3) изменяются только средняя излучаемая мощность Рбрлс передатчика и время Ткн когерентного накопления сигнала в приемнике БРЛС без изменения несущей частоты зондирующего сигнала. Причем, если условие (3) первоначально не было выполнено, то с помощью станции РТР распознается структура и параметры зондирующего сигнала, а следовательно на данной несущей частоте зондирующего сигнала со стороны САП будет осуществляться постановка помех, то есть указанные выше меры (уменьшение средней излучаемой мощности передатчика и увеличение времени когерентного накопления сигала) не позволят обеспечить в целом помехозащищенность БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех.

Цель изобретения - обеспечение помехозащищенности импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех.

Указанная цель достигается тем, что в способе функционирования импульсно-доплеровской БРЛС при обнаружении воздушной цели - носителя станций РТР и активных помех, заключающемся в формировании высокочастотной последовательности зондирующих импульсов на первоначальной несущей частоте f1, их усилении по мощности, излучении в направлении воздушной цели - носителя станций РТР и активных помех, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом, при этом дальность Dбрлс обнаружения воздушной цели - носителя станций РТР и активных помех определяется выражением (1), причем, при каждом приеме сигнала, отраженного от воздушной цели - носителя станций РТР и активных помех, измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DPTP станцией РТР излученного БРЛС высокочастотного зондирующего сигнала на несущей частоте f1, определяемой выражением (2), при выполнении условия (3) принимают решение о том, что скрытность БРЛС при ее работе на излучение обеспечена и станция РТР не обнаруживает и не распознает структуру и параметры излученного БРЛС сигнала на первоначальной несущей частоте f1, при этом, средняя излучаемая мощность Рбрлс передатчика, время облучения воздушной цели - носителя станций РТР и активных помех и время Ткн когерентного накопления сигнала в приемнике БРЛС остаются неизменными, в этом случае обеспечивается помехозащищенность БРЛС, поскольку структура и параметры зондирующего сигнала на несущей частоте f1 не будут распознаны станцией РТР и постановка помех со стороны САП на несущей частоте f1 осуществляться не будет, дополнительно, если условие (3) не выполняется, то одновременно с увеличением в n раз, где n - целое или дробное число, большее единицы, времени облучения воздушной цели - носителя станций РТР и активных помех и времени Ткн когерентного накопления сигнала в приемнике БРЛС, уменьшением в п раз средней излучаемой мощности Рбрлс передатчика БРЛС, осуществляют переход на другую несущую частоту fi где i=2, I; I - общее количество несущих частот зондирующего сигналя, до тех пор, пока не будет выполнено условие (3), что свидетельствует об обеспечении помехозащищенности импульсно-доплеровской бортовой радиолокационной станции при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех на несущей частоте зондирующего сигнала fi, то есть структура и параметры зондирующего сигнала в этом случае не будут распознаны станцией РТР, а следовательно, постановка помех со стороны САП на данной несущей частоте зондирующего сигнала fi осуществляться не будет.

Новым признаком, обладающим существенным отличием, является одновременное:

увеличение в n раз времени облучения воздушной цели - носителя станций РТР и активных помех и времени Ткн когерентного накопления сигнала в приемнике БРЛС;

уменьшение в n раз средней излучаемой мощности Рбрлс передатчика БРЛС;

переход на другую несущую частоту до тех пор, пока не будет выполнено условие (3),

которое свидетельствует об обеспечении помехозащищенности работы БРЛС на излучение на данной несущей частоте, то есть структура и параметры зондирующего сигнала в этом случае не будут распознаны станцией РТР, а следовательно, постановка помех со стороны САП на данной несущей частоте зондирующего сигнала осуществляться не будет.

Данный признак обладает существенным отличием, так как в известных способах не обнаружен.

Применение нового признака позволит всегда обеспечить помехозащищенность импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех.

На фигуре представлена блок-схема, поясняющая предлагаемый способ функционирования импульсно-доплеровской БРЛС при обнаружении воздушной цели - носителя станций РТР и активных помех.

Способ функционирования импульсно-доплеровской БРЛС при обнаружении воздушной цели - носителя станций РТР и активных помех реализуется следующим образом (фигура).

С помощью перестраиваемого задающего генератора (ЗГ) 1, синхронизатора 2 и модулятора 3 формируются высокочастотные последовательности зондирующих импульсов на первоначальной несущей частоте f1, которые усиливаются в усилителе 4 мощности высокой частоты (УМ ВЧ) с управляемым коэффициентом усиления и через антенный переключатель (АП) 5, антенну (А) 6 излучаются в направлении воздушной цели - носителя станций РТР и активных помех. Отраженные от воздушной цели - носителя станций РТР и активных помех сигналы принимаются антенной 6 и через антенный переключатель 5 поступают в приемник БРЛС, в котором усиливаются в усилителе 7 высокой частоты (УВЧ), преобразуются в тракте 8 преобразования на промежуточные частоты (ПЧ), селектируются по дальности в селекторе 9 дальности (СД) с помощью селекторных импульсов, поступающих на его вход с выхода синхронизатора 2, а также селектируются по доплеровской частоте в преобразователе 10, на входы которого поступают значения углов ориентации диаграммы направленности антенны в вертикальной и горизонтальной плоскостях с выхода угломерного канала (на схеме не показан) и значение собственной скорости носителя БРЛС с выхода навигационного комплекса (на схеме не показан). В преобразователе 11 сигнал из аналоговой формы преобразуется в цифровую форму, который поступает на вход блока 12 быстрого преобразования Фурье (БПФ), где осуществляется его спектральный анализ, и с его выхода - на индикатор.

Одновременно в измерителе 13 дальности (ИД) осуществляется измерение дальности DБРЛС обнаружения БРЛС воздушной цели - носителя станций РТР и активных помех, которая сравнивается в анализаторе 15 с предварительно рассчитанной в вычислителе (ВЧ) 14 в соответствии с формулой (2) максимальной дальностью DPTP обнаружения станцией РТР излученного БРЛС зондирующего сигнала.

При выполнении условия (3) в анализаторе 15 принимается решение о том, что скрытность БРЛС при ее работе на излучение обеспечена и станция РТР не обнаруживает и не распознает структуру и параметры излученного БРЛС сигнала на первоначальной несущей частоте f1, при этом, средняя излучаемая мощность Рбрлс передатчика, время облучения воздушной цели - носителя станций РТР и активных помех и время Ткн когерентного накопления сигнала в приемнике БРЛС остаются неизменными. В этом случае обеспечивается помехозащищенность БРЛС, поскольку структура и параметры зондирующего сигнала на несущей частоте f1 не будут распознаны станцией РТР и постановка помех со стороны САП на несущей частоте f1 осуществляться не будет. При этом на первом 16, втором 17, третьем 18 и четвертом 19 выходах анализатора 15 формируются сигналы, являющиеся запрещающими для изменения соответственно времени когерентного накопления сигнала (эквивалентной полосы пропускания одного бита алгоритма БПФ) в блоке 12 БПФ, времени облучения воздушной цели - носителя станций РТР и активных помех, которое управляется с помощью системы 20 управления антенной (СУА), излучаемой средней мощности передатчика, управление которой осуществляется в усилителе 4 мощности высокой частоты и несущей частоты зондирующего сигнала, формируемой на выходе перестраиваемого задающего генератора 1.

При невыполнении условия (3) в анализаторе 15 принимается решение о том, что помехозащищенность импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех не обеспечена. При этом на первом 16, втором 17, третьем 18 и четвертом 19 выходах анализатора 15 формируются сигналы, являющиеся разрешающими для увеличения в n раз, где n - целое или дробное число, большее единицы, соответственно времени когерентного накопления сигнала в блоке 12 БПФ путем увеличения количества отсчетов процедуры БПФ при постоянной частоте дискретизации сигнала в блоке 11, и времени облучения воздушной цели - носителя станций РТР и активных помех путем управления диаграммой направленности антенны БРЛС с помощью системы 20 управления антенной таким образом, чтобы время нахождения луча диаграммы направленности находилось бы на той угловой позиции, на которой обнаружена воздушная цель - носитель станций РТР и активных помех, было бы равно времени когерентного накопления сигнала в блоке 12 БПФ, а также разрешающим сигналом для уменьшения в n раз излучаемой средней мощности передатчика БРЛС путем уменьшения коэффициента усиления в усилителе 4 мощности высокой частоты и перестройки в перестраиваемом задающем генераторе 1 несущей частоты зондирующего сигнала на частоту fi (где i=2, I; I - общее количество несущих частот зондирующего сигналя) до тех пор, пока не будет выполнено условие (3), что свидетельствует об обеспечении помехозащищенности импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех на данной несущей частоте зондирующего сигнала fi, В этом случае структура и параметры зондирующего сигнала не будут распознаны станцией РТР, а следовательно, постановка помех со стороны САП на данной несущей частоте fi, осуществляться не будет.

Таким образом, применение предлагаемого изобретения позволит за счет одновременного изменения средней мощности передатчика БРЛС, времени когерентного накопления сигнала в ее приемнике и несущей частоты зондирующего сигнала всегда обеспечить помехозащищенность импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении воздушной цели - носителя станций РТР и активных помех.

Источники информации

1. Авиационные радиолокационные комплексы и системы: учебник для слушателей и курсантов ВУЗов ВВС / П.И. Дудник, Г.С. Кондратенков, Б.Г. Татарский, А.Р. Ильчук, А.А. Герасимов. Под ред. П.И. Дудника. - М.: изд. ВВИА им. проф. Н.Е. Жуковского, 2006, страницы 630 (формула (12.89), 639-641, рисунок 12.39 (аналог).

2. Белоцерковский Г. Б. Основы радиолокации и радиолокационные устройства. - М.: «Сов. Радио», 1975, страница 96, формула (4.8).

3. Богданов А.В., Антипов В.Н., Закомолдин Д.В., Короткое С.С. Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станции радиотехнической разведки./ Патент на изобретение №2608550 МПК G01S 13/52 (2006.01), Россия, заявка №2015154927, приоритет 21.12.2015, зарегестрировано 23.01.2017. Бюл №3 (прототип).

Похожие патенты RU2679597C1

название год авторы номер документа
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станции радиотехнической разведки 2015
  • Богданов Александр Викторович
  • Антипов Владимир Никитович
  • Закомолдин Денис Викторович
  • Коротков Сергей Сергеевич
RU2608551C1
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при обеспечении энергетической скрытности её работы на излучение 2019
  • Богданов Александр Викторович
  • Голубенко Валентин Александрович
  • Закомолдин Денис Викторович
  • Кочетов Игорь Вячеславович
  • Кучин Александр Александрович
  • Акимов Сергей Иванович
RU2694891C1
Способ обеспечения помехозащищенности бортовой радиолокационной станции при постановке прицельных по частоте помех станцией активных помех 2022
  • Богданов Александр Викторович
  • Булов Виталий Александрович
  • Закомолдин Денис Викторович
  • Тараскин Антон Сергеевич
  • Часовских Сергей Александрович
  • Шабатура Юрий Михайлович
RU2780470C1
Способ функционирования системы импульсно-доплеровских бортовых радиолокационных станций при групповых действиях истребителей 2019
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Голубенко Валентин Александрович
  • Кочетов Игорь Вячеславович
  • Акимов Сергей Иванович
RU2728280C1
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при воздействии по основному лепестку диаграммы направленности антенны помехи типа DRFM 2019
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Царёв Олег Валерьевич
  • Закомолдин Денис Викторович
  • Кочетов Игорь Вячеславович
  • Часовских Сергей Александрович
  • Якунина Гаяне Размиковна
RU2724116C1
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием воздействия помехи из вынесенной точки пространства при обнаружении воздушной цели, прикрываемой постановщиком помех 2018
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Голубенко Валентин Александрович
  • Закомолдин Денис Викторович
  • Каневский Михаил Игоревич
  • Кочетов Игорь Вячеславович
  • Кучин Александр Александрович
  • Часовских Сергей Александрович
RU2688188C1
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов 2019
  • Богданов Александр Викторович
  • Закомолдин Денис Викторович
  • Часовских Сергей Александрович
RU2718698C1
СПОСОБ ЗАЩИТЫ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИИ ОТ УВОДЯЩИХ ПО ДАЛЬНОСТИ ПОМЕХ С ИСПОЛЬЗОВАНИЕМ СТАНЦИИ АКТИВНЫХ ПОМЕХ 2007
  • Малышев Владимир Александрович
  • Похващев Валерий Николаевич
  • Прокофьев Владимир Сергеевич
RU2335783C1
Способ совместного функционирования бортовых РЛС и станций активных помех при групповых действиях истребителей 2020
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Акимов Сергей Иванович
  • Софийский Владимир Дмитриевич
RU2760329C1
Бортовая радиолокационная станция 2016
  • Бекирбаев Тамерлан Османович
  • Горбай Александр Романович
  • Потравный Виталий Викторович
  • Евдокимов Геннадий Иванович
  • Леонов Юрий Иванович
  • Бондаренко Игорь Олегович
  • Пузакин Юрий Михайлович
  • Федрушков Вячеслав Юрьевич
  • Мазуров Александр Григорьевич
  • Рябошапка Александр Викторович
  • Владимиров Михаил Николаевич
  • Бурдыло Александр Вадимович
  • Цахаев Захар Юнусович
  • Пигин Владимир Евгеньевич
  • Пастухов Андрей Викторович
  • Королев Вячеслав Валерианович
  • Балюра Александр Петрович
  • Старикова Татьяна Алексеевна
  • Ханыкин Александр Кузьмич
  • Ларионов Сергей Владимирович
  • Трушанов Алексей Андреевич
  • Лукьянова Любовь Александровна
  • Гаврилов Сергей Николаевич
  • Костин Анатолий Иванович
  • Чеботарева Инна Михайловна
RU2609156C1

Иллюстрации к изобретению RU 2 679 597 C1

Реферат патента 2019 года Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станций радиотехнической разведки и активных помех

Изобретение относится к области радиолокации и может быть использовано для повышения помехозащищенности импульсно-доплеровской бортовой радиолокационной станции (БРЛС) при ее работе на излучение и обнаружении воздушной цели (ВЦ) - носителя станций радиотехнической разведки (РТР) и активных помех (АП). Достигаемый технический результат - обеспечение помехозащищенности импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении ВЦ - носителя станций РТР и АП. Способ заключается в формировании высокочастотной последовательности зондирующих импульсов на первоначальной несущей частоте f1, их усилении по мощности, излучении в направлении ВЦ - носителя станций РТР и АП, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом, при каждом приеме сигнала, отраженного от ВЦ - носителя станций РТР и АП, измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DPTP станцией РТР излученного БРЛС сигнала на несущей частоте f1, при выполнении условия DБРЛС>DPTP принимают решение о том, что скрытность БРЛС при ее работе на излучение обеспечена и станция РТР не обнаруживает и не распознает структуру и параметры излученного БРЛС сигнала на несущей частоте f1, в этом случае обеспечивается помехозащищенность БРЛС, поскольку постановка помех со стороны станции активных помех (САП) осуществляться не будет, в противном случае - одновременно с увеличением в n раз, где n - целое или дробное число, большее единицы, времени когерентного накопления сигнала в приемнике БРЛС, уменьшением в n раз средней излучаемой мощности передатчика БРЛС, осуществляют переход на другую несущую частоту fi, где i=2, I, где I - общее количество несущих частот зондирующего сигнала, до тех пор, пока не будет выполнено условие DБРЛС>DPTP, что свидетельствует об обеспечении помехозащищенности импульсно-доплеровской БРЛС. 1 ил.

Формула изобретения RU 2 679 597 C1

Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станций радиотехнической разведки и активных помех, заключающийся в формировании высокочастотной последовательности зондирующих импульсов на первоначальной несущей частоте f1, их усилении по мощности, излучении в направлении воздушной цели - носителя станций радиотехнической разведки и активных помех, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом, при этом дальность DБРЛС обнаружения воздушной цели - носителя станций радиотехнической разведки и активных помех определяется выражением

где Рбрлс - средняя излучаемая мощность передатчика; Ткн - время когерентного накопления сигнала в приемнике, равное времени облучения воздушной цели - носителя станций радиотехнической разведки и активных помех; Gбрлс - коэффициент направленного действия передающей антенны; Sa - эффективная площадь приемной антенны; σртр - эффективная поверхность отражения воздушной цели - носителя станций радиотехнической разведки и активных помех; αn - коэффициент потерь энергии сигнала при его обработке; N0 -спектральная плотность внутренних шумов приемника; R0 - отношение энергии сигнала к спектральной плотности шума, при котором обеспечивается обнаружение с заданной вероятностью воздушной цели - носителя станций радиотехнической разведки и активных помех, причем, при каждом приеме сигнала, отраженного от воздушной цели - носителя станций радиотехнической разведки и активных помех, измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DРТР станцией радиотехнической разведки излученного бортовой радиолокационной станцией высокочастотного зондирующего сигнала на несущей частоте f1, определяемой выражением

где Gртр - коэффициент направленного действия приемной антенны станции радиотехнической разведки; λбрлс - длина волны бортовой радиолокационной станции; Рртр - максимальное значение чувствительности приемника станции радиотехнической разведки, при выполнении условия

принимают решение о том, что скрытность бортовой радиолокационной станции при ее работе на излучение обеспечена и станция радиотехнической разведки не обнаруживает и не распознает структуру и параметры излученного бортовой радиолокационной станцией сигнала на первоначальной несущей частоте f1, при этом средняя излучаемая мощность Рбрлс передатчика, время облучения воздушной цели - носителя станций радиотехнической разведки и активных помех и время Ткн когерентного накопления сигнала в приемнике бортовой радиолокационной станции остаются неизменными, отличающийся тем, что если условие (3) не выполняется, то одновременно с увеличением в n раз, где n - целое или дробное число, большее единицы, времени облучения воздушной цели - носителя станций радиотехнической разведки и активных помех и времени Ткн когерентного накопления сигнала в приемнике бортовой радиолокационной станции, уменьшением в n раз средней излучаемой мощности Рбрлс передатчика бортовой радиолокационной станции, осуществляют переход на другую несущую частоту fi, где i=2, I; I - общее количество несущих частот зондирующего сигнала, до тех пор, пока не будет выполнено условие (3).

Документы, цитированные в отчете о поиске Патент 2019 года RU2679597C1

СПОСОБ ФУНКЦИОНИРОВАНИЯ РАДИОЛОКАЦИОННОЙ СИСТЕМЫ НА БАЗЕ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ С УПРАВЛЯЕМЫМИ ПАРАМЕТРАМИ ИЗЛУЧЕНИЯ 2013
  • Козлов Сергей Вячеславович
  • Усков Александр Васильевич
  • Зимарин Виктор Иванович
RU2543511C1
УСТРОЙСТВО ИСКАЖЕНИЯ РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ 2014
  • Лихачев Владимир Павлович
  • Семенов Владимир Владимирович
RU2605205C2
АВТОМАТИЧЕСКАЯ СТАНЦИЯ ОТВЕТНЫХ ПОМЕХ 1994
  • Бутенко В.И.
  • Ерофеев Ю.Н.
  • Михайлов Л.В.
RU2103705C1
СПОСОБ ОБРАБОТКИ СИГНАЛОВ НА ФОНЕ СИЛЬНЫХ ИМПУЛЬСНЫХ ПОМЕХ В ПРИЕМНОМ КАНАЛЕ ИМПУЛЬСНО-ДОПЛЕРОВСКИХ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ 2007
  • Лукьянов Сергей Федорович
  • Герасимов Сергей Николаевич
  • Шаронов Владимир Витальевич
RU2334247C1
US 7961133 B2, 14.06.2011
US 8054212 B1, 08.11.2011
JP 2001221844 A, 17.08.2001
KR 2015093488 A, 18.08.2015.

RU 2 679 597 C1

Авторы

Богданов Александр Викторович

Антипов Владимир Никитович

Голубенко Валентин Александрович

Докучаев Ярослав Сергеевич

Закомолдин Денис Викторович

Кочетов Игорь Вячеславович

Кучин Александр Александрович

Даты

2019-02-12Публикация

2018-05-25Подача