Способ запуска газотурбинного двигателя Российский патент 2019 года по МПК F02C7/00 

Описание патента на изобретение RU2680287C1

Предлагаемое изобретение относится к области авиационной техники, а именно к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска и может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах.

Запуск газотурбинного двигателя представляет одну из основных операций предполетной подготовки летательного аппарата. Для функционирования газотурбинного двигателя (ГТД) необходимо создать условия для подачи топлива в камеру сгорания, такие как расход воздуха и давление. Для создания этих условий ротор ГТД необходимо раскрутить до оборотов необходимых для выхода на режим малого газа.

Известен способ запуска ГТД, который запуск осуществляется сравнительно небольшим газотурбинным пусковым двигателем (турбостартером) [Авиационное оборудование. / Ю.А. Андриевский, Ю.Е. Воскресенский, Ю.П. Доброленский и др.; Под ред. Ю.П. Доброленского. - М: Воениздат, 1989, стр. 62]. Данный способ наиболее применим для запуска мощных авиадвигателей. К недостаткам этого способа можно отнести необходимость дополнительного двигателя для запуска турбостартера, что приводит к увеличению общего времени запуска, усложнению производства и эксплуатации газотурбинного двигателя.

Известны электрические способы запуска ГТД, которые осуществляется либо непосредственно стартером, либо стартер-генератором. При этом в качестве источника электрической энергии используются бортовые аккумуляторные батареи или аэродромный источник электрической энергии.

Способ запуска непосредственно от электростартера, который является отдельной конструктивной единицей относительно большой массы и габаритов и выполняет только функции запуска, а в дальнейшем является неиспользуемым грузом, увеличивает полетную массу летательного аппарата, что является основным его недостатком.

Наибольшее распространение для запуска современных газотурбинных двигателей получили способы, использующие совмещенный стартер-генератора.

Известен способ запуска ГТД от стартер-генератора постоянного тока, имеющего щеточно-коллекторный узел [Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / Под редакцией С.А. Грузкова. Том 1. Системы электроснабжения летательных аппаратов. - М.: Издательство МЭИ, 2005., стр. 194-195]. Основным недостатком данного способа запуска ГТД является низкая надежность, обусловленная наличием щеточно-коллекторного узла.

Известен ГТД, который содержит бесконтактный синхронный генератор с вращающимся выпрямителем, состоящий из трех электрических машин: основной электрической машины - генератора, возбудителя, подвозбудителя, имеющих общий корпус и вал [Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / Под редакцией С.А. Грузкова. Том 1. Системы электроснабжения летательных аппаратов. - М.: Издательство МЭИ, 2005., стр. 184-185] и способ его запуска в стартерном режиме.

Известен способ запуска ГТД [патент РФ №2524776 С1], осуществляемый бесконтактным стартер-генератором, при котором в начальный момент запуска газотурбинного двигателя обмотку якоря основной электрической машины и обмотку возбуждения возбудителя через блок управления подключают к источнику питания, при этом блок управления обеспечивает опережение вектора магнитного потока основного генератора относительно оси полюса ротора, и начальная раскрутка газотурбинного двигателя осуществляется реактивным моментом. С увеличением частоты вращения индуцированная электродвижущая сила в обмотке якоря возбудителя, выпрямленная блоком вращающегося выпрямителя, питает обмотку возбуждения основной электрической машины, создавая активный вращающий момент. При достижении заданной частоты вращения блок управления отключают от обмотки якоря основной электрической машины. Тем самым, основную электрическую машину переводят в генераторный режим. Данный способ наиболее близок к заявляемому техническому решению и является прототипом.

Основным недостатком способа запуска ГТД, реализуемого по техническому предложению прототипа, является необходимость датчика положения ротора синхронного генератора для реализации двигательного (стартерного) режима работы. Это влечет за собой усложнение конструкции электромашинного агрегата. Кроме того, на начальном этапе процесса запуска раскрутка осуществляется за счет реактивного момента. Для создания максимального реактивного момента требуется регулировка положения вектора тока обмотки якоря основной электрической машины относительно оси полюсов ротора по сложному закону, зависящему как от индуктивных параметров, так и от частоты вращения ротора, тока обмотки возбуждения основной электрической машины и напряжения обмотки возбуждения возбудителя. В связи со сказанным, техническое решение для реализации запуска газотурбинного двигателя по способу, предложенному в прототипе, не является оптимальным из-за усложнения управляющих устройств.

Технический результатом, который достигается при использовании предлагаемого способа, является реализация запуска ГТД с помощью основной электрической машины с демпферной клеткой в составе трехкаскадного синхронного генератора без использования датчика положения ротора и формирования реактивного момента, то есть без изменения конструкции синхронного генератора и усложнения управляющих устройств.

Технический результат достигается тем, что в известном способе запуска газотурбинного двигателя, осуществляемом трехкаскадным бесконтактным синхронным генератором, содержащим основную электрическую машину с демпферной клеткой, возбудитель, подвозбудитель, представляющий собой магнитоэлектрический генератор, и вращающийся выпрямитель в начальный момент запуска газотурбинного двигателя реализуется асинхронный режим работы основной электрической машины, электромагнитный момент которой создается демпферной клеткой, с увеличением частоты вращения до величины, при которой становится возможным использование напряжений подвозбудителя для вычисления угла положения ротора, с одновременной подачей питания на обмотку возбуждения, основная электрическая машина переводится в синхронный режим работы, а при достижении заданной частоты вращения, определяемой числом оборотов малого газа газотурбинного двигателя, основная электрическая машина переводится в генераторный режим.

На Фиг. 1 приведена схема размещения электрических машин в корпусе генератора ГТД. На Фиг. 2 - схема соединения обмоток машин с управляющими устройствами, реализующая предлагаемый способ.

Основная электрическая машина - бесщеточный синхронный генератор с демпферной клеткой, возбудитель, подвозбудитель и вращающийся выпрямитель расположены в общем корпусе 1 (Фиг. 1). На корпусе закреплены якорь основной электрической машины 2 с якорной обмоткой 3, индуктор возбудителя 4 с обмоткой возбуждения 5, якорь синхронного подвозбудителя 6 с якорной обмоткой 7. На общем для трех машин валу 8 закреплены явно выраженные полюса индуктора 9 основной электрической машины с обмоткой возбуждения 10, блок вращающегося выпрямителя 11, якорь синхронного возбудителя 12 с обмоткой 13 и система постоянных магнитов 14 синхронного подвозбудителя.

В соответствии с Фиг. 2 обмотка возбуждения возбудителя 5 и якорная обмотка подвозбудителя 7 соединены с блоком регулирования возбуждением 15, который, в свою очередь, соединен с блоком 16 формирования режимов работы основной электрической машины в двигательном режиме (в процессе запуска ГТД). Обмотка возбуждения 10 основной электрической машины через вращающийся выпрямитель 11 соединена с обмоткой якоря возбудителя 13. Обмотка якоря 3 основной электрической машины в двигательном режиме через линейный контактор 17 соединена с блоком 16, а в генераторном режиме через линейный контактор 18 с бортовой сетью электропитания летательного аппарата. Блок 15 содержит два входа, один из которых служит для подключения обмотки якоря 7 подвозбудителя, а второй - для подключения к бортовой цепи питания, и два выхода, один из которых служит для передачи информации о положении ротора на блок 16 в двигательном режиме, а второй - для соединения с обмоткой возбуждения возбудителя 5 на втором этапе фазы запуска и в генераторном режиме. Блок 15 состоит из трехфазного выпрямителя, который предназначен для питания постоянным током обмотки возбуждения 5 возбудителя и управляющей части.

Блок 16 состоит из силовой и управляющей части. Силовая часть блока представляет собой классический трехфазный инвертор, который коммутирует фазы якорной обмотки 3 основной электрической машины бесконтактного явнополюсного синхронного генератора в двигательном режиме. Питание силовой части осуществляется либо от бортового источника постоянного тока, либо через выпрямитель от источника переменного тока.

Способ запуска газотурбинного двигателя в соответствии с предлагаемым изобретением осуществляется следующим образом. Для запуска используется бортовой трехкаскадный бесконтактный синхронный генератор, содержащий вращающийся выпрямитель и три электрические машины, имеющие общий корпус и вал: основная электрическая машина с демпферной клеткой, возбудитель и подвозбудитель. Весь процесс запуска разбивается на два этапа. Во время первого этапа фазы запуска первоначально газотурбинный двигатель не работает, главную электрическую машину переводят в режим асинхронного двигателя посредством подачи трехфазной системы токов в статорные обмотки главной электрической машины. Трехфазную систему токов генерирует на первом этапе пуска инвертор блока управления 16, питание силовой части которого осуществляется от бортовой сети. С выхода блока 16 трехфазная система напряжений через линейный контактор 17 подается на обмотку якоря 3 основной электрической машины. Обмотка возбуждения 10 основной электрической машины на этой фазе запуска питание не получает. Взаимодействие магнитного потока обмотки якоря с токами, наведенными в короткозамкнутых клетках, образованных демпфирующими стержнями индуктора основной электрической машины, создает асинхронный электромагнитный момент. За счет этого момента осуществляется первоначальная раскрутка вала газотурбинного двигателя.

Как известно, при работе в режиме синхронного генератора демпфирующие стержни должны обеспечивать механическую прочность ротора, повышать коэффициент синусоидальной формы с одновременным обеспечением равномерности магнитного поля в рабочем пространстве, уменьшать последствия плохо распределенных трехфазных нагрузок и демпфировать вибрации во время переходных нагрузок.

Основной момент сопротивления, который необходимо преодолеть стартер-генератору в процессе запуска газотурбинного двигателя, создает компрессор. Этот момент пропорционален квадрату частоты вращения п компрессора:

где Ак - постоянная, характеризующая параметры компрессора.

Таким образом, в начальный момент пуска стартер-генератор должен развить момент, необходимый для преодоления только инерции вращающихся частей [К.С. Бобов, В.А. Винокуров, B.C. Аскерко, М.В. Кравчук, Г.И. Панасюк. Авиационные электрические машины. Часть 1. Машины постоянного и переменного тока. Трансформаторы. / Под ред. К.С. Бобова. - ВВИА им. проф. Н.Е. Жуковского; 1960, стр. 199]. Поэтому асинхронный момент, создаваемый демпферной клеткой основной электрической машины при подключении ее статорной обмотки к трехфазной системе токов, оказывается достаточным для осуществления начальной раскрутки вала газотурбинного двигателя. По мере увеличения частоты вращения в обмотке якоря 7 подвозбудителя, который представляет собой трехфазный синхронный генератор с возбуждением от постоянных магнитов 14, индуцируется трехфазная система ЭДС.

На втором этапе запуска газотурбинного двигателя основную электрическую машину переводят в режим синхронного двигателя, для чего подают питание на ее обмотку возбуждения, а для синхронизации осей магнитных потоков ротора и статора используют информацию о положении вала машины, в соответствии с которой реализуют поле ориентированную векторную систему управления [] F. Blaschke. The principle of field-orientation as applied to the transvector closed loop control system for rotating-fleld machines: Siemens Rev., vol. 34, no. 1, pp. 217-220, 1972.]. Ко второму этапу фазы запуска переходят, когда скорость вращения вала достигает величины, при которой становится возможным вычисление угла положения ротора по величинам ЭДС, индуцируемых в обмотке якоря 7 подвозбудителя. При этом блок регулирования 15 формирует команду на переход ко второму этапу фазы запуска. По этой команде обмотка якоря 7 подвозбудителя, через выпрямитель, располагаемый в блоке 15, подключается к обмотке возбуждения 5 возбудителя, питая ее постоянным током. Обмотка якоря синхронного возбудителя 13 соединяется через блок вращающегося выпрямителя 11 с обмоткой возбуждения 10 основного генератора. В результате обмотка возбуждения основной электрической машины так же получает питание постоянным током. По этой же команде (перехода ко второму этапу фазы запуска) блок регулирования 15 на основании напряжений обмотки якоря 7 подвозбудителя формирует сигналы, определяющие угловое положение ротора относительно полюсов обмотки статора 3 основной электрической машины. Эти сигналы поступают на вход блока 16. На основании этих сигналов в блоке 16 формируется закон управления силовыми ключами инвертора, обеспечивающий оптимальную ориентацию полюсов обмотки статора 3 основной электрической машины относительно магнитного потока обмотки возбуждения 10. В результате во втором этапе фазы запуска основная электрическая машина переводится в режим синхронного двигателя с коммутацией фаз обмотки статора 3, зависящей от их положения относительно магнитного поля индуктора 9. Для синхронизации осей магнитных потоков ротора и статора используется полученная информация о положении вала машины, в соответствии с которой реализуется поле ориентированная векторная система управления [F. Blaschke. The principle of field-orientation as applied to the transvector closed loop control system for rotating-field machines: Siemens Rev., vol. 34, no. 1, pp. 217-220, 1972.].

(Синхронные двигатели, работающие с зависимой коммутацией фаз, часто называют вентильными двигателями, в англоязычной литературе BLDC или PMSM).

Второй этап запуск заканчивают, когда частота вращения роторного модуля оказывается достаточной для запуска и зажигания газотурбинного двигателя. После запуска и зажигания газотурбинного двигателя линейный контактор 17 размыкается. Главная электрическая переходит в режим бесконтактного синхронного генератора, трехфазное электрическое напряжение которого через линейный переключатель 18 подают в бортовую сеть самолета.

Предлагаемое техническое решение реализует функции двигательного режима бесконтактного синхронного генератора с демпферной обмоткой без изменения конструкции, увеличения массы и усложнения управляющих устройств, сохраняя достоинств бесконтактного явнополюсного синхронного генератора с вращающимся выпрямителем [Вентильные генераторы автономных систем электроснабжения. / Н.М. Рожнов, A.M. Русаков, A.M. Сугробов, П.А. Тыричев; Под ред. П.А. стр. 14], который в настоящее время является основным типом источника электрической энергии на борту большинства эксплуатируемых самолетов.

Похожие патенты RU2680287C1

название год авторы номер документа
Способ запуска газотурбинного двигателя 2019
  • Сапсалев Анатолий Васильевич
  • Жарков Максим Андреевич
  • Харитонов Андрей Сергеевич
  • Штейн Дмитрий Александрович
  • Дубкова Регина Юрьевна
RU2717477C1
СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ БЕСКОНТАКТНЫМ ЯВНОПОЛЮСНЫМ СИНХРОННЫМ ГЕНЕРАТОРОМ С ВРАЩАЮЩИМСЯ ВЫПРЯМИТЕЛЕМ 2013
  • Волокитина Елена Владимировна
  • Власов Андрей Иванович
  • Ерохин Денис Викторович
  • Москвин Евгений Владимирович
  • Никитин Владимир Владимирович
RU2524776C1
АКСИАЛЬНЫЙ УПРАВЛЯЕМЫЙ БЕСКОНТАКТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР 2015
  • Гайтов Багаудин Хамидович
  • Кашин Яков Михайлович
  • Кашин Александр Яковлевич
  • Князев Алексей Сергеевич
RU2601952C1
АКСИАЛЬНЫЙ БЕСКОНТАКТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР 2013
  • Гайтов Багаудин Хамидович
  • Кашин Яков Михайлович
  • Князев Алексей Сергеевич
  • Кашин Александр Яковлевич
  • Пудов Сергей Александрович
RU2529210C1
УСТРОЙСТВО ДЛЯ ПУСКА И БЕСЩЕТОЧНОГО ВОЗБУЖДЕНИЯ БЕСКОНТАКТНОЙ СИНХРОННОЙ МАШИНЫ 2012
  • Ищенко Иван Михайлович
  • Клобуков Николай Николаевич
  • Робатень Сергей Сергеевич
  • Сбитной Михаил Леонидович
RU2502180C2
Синхронизированная аксиальная двухвходовая генераторная установка 2017
  • Кашин Яков Михайлович
  • Кашин Александр Яковлевич
  • Копелевич Лев Ефимович
  • Самородов Александр Валерьевич
  • Христофоров Михаил Сергеевич
RU2647708C1
Стартер-генератор 1981
  • Потапчик Иван Владимирович
SU1050056A1
АКСИАЛЬНАЯ ДВУХВХОДОВАЯ БЕСКОНТАКТНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА-ГЕНЕРАТОР 2011
  • Гайтов Багаудин Хамидович
  • Кашин Яков Михайлович
  • Гайтова Тамара Борисовна
  • Кашин Александр Яковлевич
  • Пауков Дмитрий Викторович
  • Голощапов Андрей Владимирович
RU2450411C1
СТАРТЕР-ГЕНЕРАТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЕГО УПРАВЛЕНИЯ 2010
  • Де Вержифосс Эрик
RU2528950C2
БЕСЩЕТОЧНЫЙ СИНХРОННЫЙ ГЕНЕРАТОР С УСОВЕРШЕНСТВОВАННЫМ УПРАВЛЕНИЕМ В АВАРИЙНОМ РЕЖИМЕ 2022
  • Голота Сергей Алексеевич
  • Дерех Андрей Ярославович
  • Дунст Олег Игоревич
  • Захаренков Валерий Николаевич
RU2788965C1

Иллюстрации к изобретению RU 2 680 287 C1

Реферат патента 2019 года Способ запуска газотурбинного двигателя

Изобретение относится к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска, может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах. Основная электрическая машина включает в себя: бесщеточный синхронный генератор с демпферной клеткой, возбудитель, подвозбудитель и вращающийся выпрямитель. На корпусе закреплены якорь основной электрической машины с якорной обмоткой, индуктор возбудителя с обмоткой возбуждения, якорь синхронного подвозбудителя с якорной обмоткой. На общем для трех машин валу закреплены явно выраженные полюса индуктора основной электрической машины с обмоткой возбуждения, блок вращающегося выпрямителя, якорь синхронного возбудителя с обмоткой и система постоянных магнитов синхронного подвозбудителя. Технический результат направлен на реализацию запуска ГТД с помощью основной электрической машины. 2 ил.

Формула изобретения RU 2 680 287 C1

Способ запуска газотурбинного двигателя, осуществляемый трехкаскадным бесконтактным синхронным генератором, содержащим основную электрическую машину с демпферной клеткой, возбудитель, подвозбудитель, представляющий собой магнитоэлектрический генератор, и вращающийся выпрямитель, отличающийся тем, что в начальный момент запуска газотурбинного двигателя реализуется асинхронный режим работы основной электрической машины, электромагнитный момент которой создается демпферной клеткой, с увеличением частоты вращения до величины, при которой становится возможным использование напряжений подвозбудителя для вычисления угла положения ротора, с одновременной подачей питания на обмотку возбуждения, основная электрическая машина переводится в синхронный режим работы, а при достижении заданной частоты вращения, определяемой числом оборотов малого газа газотурбинного двигателя, основная электрическая машина переводится в генераторный режим.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680287C1

СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ БЕСКОНТАКТНЫМ ЯВНОПОЛЮСНЫМ СИНХРОННЫМ ГЕНЕРАТОРОМ С ВРАЩАЮЩИМСЯ ВЫПРЯМИТЕЛЕМ 2013
  • Волокитина Елена Владимировна
  • Власов Андрей Иванович
  • Ерохин Денис Викторович
  • Москвин Евгений Владимирович
  • Никитин Владимир Владимирович
RU2524776C1
СТАРТЕР-ГЕНЕРАТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЕГО УПРАВЛЕНИЯ 2010
  • Де Вержифосс Эрик
RU2528950C2
US 3354368 A1, 21.11.1967
СИНХРОННАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2004
  • Стрижков Игорь Григорьевич
  • Трубин Александр Николаевич
  • Чеснюк Евгений Николаевич
  • Стрижков Сергей Игоревич
RU2271599C1
Демпферная система синхронного двигателя 1961
  • Арутюнян В.С.
SU148452A1
СПОСОБ ЭЛЕКТРОПИТАНИЯ В ПУСКОВОМ И УСТАНОВИВШЕМСЯ РЕЖИМАХ СИНХРОННОГО ДВИГАТЕЛЯ С ПОСТОЯННЫМИ МАГНИТАМИ, В ЧАСТНОСТИ, ПРЕДНАЗНАЧЕННОГО ДЛЯ ПРИВЕДЕНИЯ В ДВИЖЕНИЕ ГИДРАВЛИЧЕСКОГО НАСОСА 1999
  • Пьяццалунга Джованни
  • Фаччин Роберто
RU2222862C2

RU 2 680 287 C1

Авторы

Сапсалев Анатолий Васильевич

Жарков Максим Андреевич

Харитонов Сергей Александрович

Бачурин Петр Александрович

Даты

2019-02-19Публикация

2018-01-09Подача