Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего волочения или прокатки, используемой для аддитивной технологии.
Изобретение направлено на снижение потерь готовой продукции, снижение затрат энергии на температурную обработку сплава и позволяет улучшить такие показатели при изготовлении проволоки для аддитивной технологии из (α+β)-титанового сплава как прочность и пластичность и исключить обрывы проволоки в процессе изготовления.
Титановый сплав ВТ6, пригодный для применения в качестве проволоки для аддитивной технологии, представляет собой сплав Ti-Al-V, который номинально содержит титан, 6 мас. % алюминия, 4 мас. % ванадия и обычно менее 0,20 мас. % кислорода. Сплав ВТ6 (α+β)-класса используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от -196°С до 450°С, и целого ряда других конструктивных элементов в авиакосмической промышленности. Для изготовления данных изделий с использованием аддитивной технологии, требуется проволока, имеющая повышенные свойства по однородности микроструктуры, фазового состава, с минимальной анизотропией механических свойств по всей длине и без наличия сварных и других соединений.
Известен способ изготовления проволоки из α-титановых сплавов путем нагрева заготовки и прокатки в несколько проходов со скоростью в первом проходе не более 2 м/с, отличающийся тем, что, с целью увеличения производительности, нагрев производят до температуры, определяемой из зависимости Т=[(450-470)-20 V1]°С, где V1 - скорость прокатки в первом проходе, а деформацию осуществляют в многовалковых калибрах с суммарной степенью 75-80%. (Патент RU №1476718, заявка 4292778/02 от 03.08.1987 г, МПК В21В 3/00).
Недостатком этого способа являются то, что в данной разработке использована многократная термообработка, получаемые при этом механические свойства проволоки не позволяют получить, из одной заготовки, провод без сварных соединений длиной не менее 8500 м.
Известен способ получения проволоки из (α+β)-титановых сплавов, включающий нагрев, деформацию и отжиг (Волочение легких сплавов. Ерманок М.З., Ватрушин Л.С. М.: ВИЛС, 1999, с. 95-108).
Недостатком этого способа являются применение много переходной операции деформации, осуществляемой с нагревом, и применение энергоемких операций травления и вакуумного отжига, следствием которого является низкий уровень значений характеристик предела прочности на разрыв, что не позволяет, из одной заготовки, получение проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском длиной не менее 8500 м для аддитивной технологии.
Известен способ изготовления высокопрочной проволоки из титана и титановых сплавов, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку (US 6077369 А, C22F 1/18, 20.06.2000).
Недостатком этого способа является окисление и трещинообразование поверхности, формирование структурной неоднородности по длине проволоки и как следствие разброс и нестабильность механических свойств проволоки, что не позволяет получение структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском длиной не менее 8500 м для аддитивной технологии.
Известен способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку, при этом после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом, после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5÷0,7)Тпп °C с дальнейшим охлаждением до комнатной температуры. (Патент RU №2460825, заявка 2011140698 от 07.10.2011 г, МПК В21В 3/00).
Недостатками этого способа являются многостадийность и длительность процесса обработки заготовки и низкие механические свойства сплава по сравнению с предлагаемым способом. Данный способ не позволяет получить структурированную проволоку из титанового сплава ВТ6 с повышенными механическими свойствами одним куском длиной не менее 8500 м для аддитивной технологии.
Наиболее близким техническим решением для описываемого ниже способа является способ изготовления проволоки из (α+β)-титановых сплавов, включающий нагрев заготовки и деформацию в несколько проходов, при этом в процессе деформации осуществляют охлаждение, причем при степени суммарной деформации до 50% охлаждение осуществляют до температуры деформации 640-670°С, при степени суммарной деформации более 50%, но менее 80% охлаждение осуществляют до температуры деформации более 670°С, но менее 700°С. (Патент RU №1520717, заявка 4309001 от 21.09.1987, МПК В21В 1/00).
Недостатком данного способа являются то, что механические свойства титанового сплава, полученные указанной обработкой, ниже, чем в предлагаемом способе, что не позволяет получение, из одной заготовки, структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском без обрыва, длиной не менее 8500 м для аддитивной технологии.
Задачей данного изобретения является повышение качества проволоки из (α+β)-титанового сплава для аддитивной технологии, снижение затрат на ее изготовление.
Технический результат, достигаемый в процессе решения задачи, заключается в получении проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине проволоки.
Технический результат достигается способом изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий, включающий нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов, отличающийся тем, что деформацию заготовок проводят путем волочения или прокатки при нагреве заготовок (Тз) до температуры Тз=300-635°С, а скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки:
V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм,
V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм,
V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм.
Кроме этого, проволоку изготавливают из титанового сплава, содержащего, мас. %: алюминий 5,50-6,76, ванадий 3,50-4,40, железо ≤0,22, углерод ≤0,05, кислород 0,14-0,18, азот ≤0,03, водород ≤0,015 и титан - остальное, проволока имеет допуск на диаметр -0,05/+0,01 мм.
Повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, это свойства титанового сплава, которые необходимо получить в процессе изготовления проволоки, чтобы иметь возможность изготовить провод, из одной заготовки, одним куском без сварных соединений. Для сплавов титана характерно значительное увеличение сопротивления пластической деформации и потеря пластичности на начальных стадиях деформирования. Особенно это проявляется при деформации α+β-титановых сплавов, имеющих повышенное содержание легирующих элементов, что способствует дополнительному упрочнению материала. Повышенное содержание алюминия в титане, особенно при значениях более 5,5%, увеличивает прочностные характеристики и снижает пластичность в условиях холодной пластической деформации. Максимальное обжатие для сплава ВТ-6 не превышает 18-20%. В этой связи при изготовлении проволоки из данного сплава используются многоциклические схемы. В данном способе предлагается проводить горячее волочение или прокатку, при нагреве заготовки до температур (300-635)°С без промежуточных термических обработок, со скоростью деформации в диапазоне (2-60) м/мин. Опытным путем определялись оптимальная скорость деформации для каждого диаметра заготовки. Важным фактором здесь является отсутствие образования мельчайших микротрещин, которые выходят на поверхность. Образование микротрещин на поверхности на начальных стадиях волочения или прокатки в дальнейшем с уменьшением диаметра, приводит порыву проволоки. Наличие сварных концов проволоки допустимо, но не для всех операций аддитивной технологии.
Ниже представлены результаты реализации способа. Реализация способа проводилась в три этап. На первом этапе изготавливались заготовки для прокатки или протяжки, на втором этапе проводилось изготовление проволоки волочением или прокаткой, на третье этапе проводилось исследование образцов проволоки. Ниже представлена часть вариантов реализации предлагаемого способа изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии. Все заготовки были изготовлены из оного слитка.
Пример 1. Вариант 1. Изготовление заготовки. Методом тройного вакуумного дугового переплава получали слиток из титанового сплава ВТ6 диаметром 450 мм; далее обтачивали до 420 мм; нагревали до температуры 850°С в газовой печи и ковали на диаметр 115 мм. Полученную заготовку обтачивали для удаления альфированного слоя, затем нагревали до температуры 900°С и проводили горячую прокатку в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 700°С в течении 2-х часов с охлаждением на воздухе и механическую обработку (калибровку) со съемом 0,3-0,5 мм на диаметр заготовки.
Изготовление проволоки. Проволока изготавливалась волочением или прокаткой диаметром 1,6 мм. Изготовление волочением, результаты исследований в числителе (табл. 1) и прокаткой, результаты исследований в знаменателе (табл. 1), на режимах, которые не выходили за предельные значения. Деформацию путем волочения или прокатки проводили при нагреве заготовки до температуры 450°С, оптимальную скорость деформации для каждого этапа, исходя из диаметра заготовки, принимали:
V=7 м/мин для диаметра d=(от 8,0 до 7,0) мм,
V=12 м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=19 м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=23 м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=37 м/мин для диаметра d=(от менее 3,0 до 2,0) мм,
V=40 м/мин для диаметра d=(от менее 2,0 до 1,8) мм,
V=45 м/мин для диаметра d=(от менее 1,8 до 1,6) мм.
После деформации проводилась окончательная полировка.
Проведение исследований. Проводились следующие виды исследований поволоки. Определялись механические свойства, исследовалась структура сплава. Исследования механических свойств проводилось на проволоке диаметром 1,6 мм, вырезанной из конца бухты, не имеющей обрыва на длине 8500 м. Полученная проволока подвергалась растяжению на разрывной машине INSTRON 5969. Длина образца проволоки для растяжения составляла 600 мм. Скорость растяжения проволоки составляла 10 мм/мин. Основные механические характеристики проволоки представлены в табл. 1. Исследование структуры (α+β)-титанового сплава проводили на образцах проволоки полученных после проведения всего цикла получения готового провода и пригодного для аддитивной технологии. На фиг. 1 представлена характерная структура сплава ВТ6 полученная на проволоке изготовленной на оптимальных режимах (Пример 1. Вариант 1), фиг. 2 представлена структура сплава ВТ6 полученная на проволоке которая порвалась (Пример 3. Вариант 5). Изображение получено на растровом электронном микроскопе модели MIRA3 TESCAN, напряжение 15 кВ, увеличение 5 kx., α - фаза титанового сплава темные области, β-фаза - светлые области. Результаты исследований представлены в табл. 1
Пример 2: Изготовление заготовки и проведение исследований проводили аналогично как в примере 1.
Вариант 2. Проволока изготавливалась волочением диаметром 1,6 мм. Изготовление проволоки проводили на режимах, при которых скорость волочения на диаметре 1,8 была ниже оптимальной. Остальные параметры процесса были оптимальными. Деформацию путем волочения проводили при нагреве заготовки до температуры 450°С, оптимальную скорость деформации для каждого этапа, исходя из диаметра заготовки, принимали:
V=7 м/мин для диаметра d=(от 8,0 до 7,0) мм,
V=12 м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=19 м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=23 м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=37 м/мин для диаметра d=(от менее 3,0 до 2,0) мм,
V=30 м/мин для диаметра d=(от менее 2,0 до 1,8) мм,
V=45 м/мин для диаметра d=(от менее 1,8 до 1,6) мм.
После деформации проводилась окончательная полировка проволоки.
Произошел обрыв проволоки на диаметре 1,8 мм, концы были сварены. Результаты исследований представлены в табл. 1
Вариант 3. Проволока изготавливалась прокаткой диаметром 1,6 мм. Изготовление проволоки проводили на режиме, в которых скорость прокатки на диаметре 1,6 мм превышала предельные значения. Деформацию путем прокатки проводили при нагреве заготовки до температуры 450°С, оптимальную скорость деформации для каждого этапа, исходя из диаметра заготовки, принимали:
V=7 м/мин для диаметра d=(от 8,0 до 7,0) мм,
V=12 м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=19 м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=23 м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=37 м/мин для диаметра d=(от менее 3,0 до 2,0) мм,
V=40 м/мин для диаметра d=(от менее 2,0 до 1,8) мм,
V=65 м/мин для диаметра d=(от менее 1,8 до 1,6) мм.
После деформации проводилась окончательная полировка.
Произошел обрыв проволоки на диаметре 1,6 мм, концы были сварены. Результаты исследований представлены в табл. 1
Пример 3. Изготовление заготовки и проведение исследований проводили аналогично как в примере 1.
Вариант 4. Проволока изготавливалась волочением диаметром 1,6 мм. Изготовление проволоки проводили на режимах нагрева заготовки ниже оптимальных значений. Деформацию путем волочения проводили при нагреве заготовки до температуры 250°С, оптимальную скорость деформации для каждого этапа, исходя из диаметра заготовки, принимали:
V=7 м/мин для диаметра d=(от 8,0 до 7,0) м,
V=12 м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=19 м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=23 м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=40 м/мин для диаметра d d=(от менее 3,0 до 2,0) мм,
V=45 м/мин для диаметра d=(от менее 2,0 до 1,8) мм,
V=45 м/мин для диаметра d=(от менее 1,8 до 1,6) мм.
После деформации проводилась окончательная полировка.
Произошел обрыв проволоки на диаметре 1,8 мм, концы были сварены. Результаты исследований представлены в табл. 1
Вариант 5. Проволока изготавливалась прокаткой диаметром 1,6 мм. Изготовление проволоки проводили на режимах нагрева заготовки превышающих предельные значения. Деформацию путем прокатки проводили при нагреве заготовки до температуры 700°С, оптимальную скорость деформации для каждого этапа, исходя из диаметра заготовки, принимали:
V=7 м/мин для диаметра d=(от 8,0 до 7,0) м,
V=12 м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=19 м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=23 м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=37 м/мин для диаметра d d=(от менее 3,0 до 2,0) мм,
V=45 м/мин для диаметра d=(от менее 2,0 до 1,8) мм,
V=55 м/мин для диаметра d=(от менее 1,8 до 1,6) мм.
После деформации проводилась окончательная полировка. Произошел обрыв проволоки на диаметре 2,6 мм, концы были сварены. Результаты представлены в табл. 1
Результаты исследований представлены в табл. 1
Представленные в таблице 1 данные показывают, что предлагаемый способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии позволяет получить проволоку, имеющую повышенные прочностные и пластические свойства, с однородной, мелкозернистой структурой, длиной проволоки на менее 8500 мм одним куском без сварных соединений. Следует также отметить, что:
- нагрев заготовки в при волочении или прокатке до температуры Тз=(300-635)°С, является одним из факторов определяющих качество титановой проволоки для аддитивной технологии, позволяет получить процесс волочения или прокатки без обрыва проволоки;
- увеличение скорости волочения или прокатки с уменьшением диаметра получения проволоки позволяет получить мелкозернистую структура сплава обладающую высокой прочностью и пластичностью;
Таким образом, предлагаемый способ получения проволоки из (α+β)-титанового сплава позволяет произвести проволоку без сваривания отдельных кусков, обладающую стабильно высоким уровнем прочности и пластичности по всей длине, что является одним из главных условий для проволоки используемой в аддитивной технологии.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)- | 2017 |
|
RU2682069C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - | 2017 |
|
RU2682071C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ | 2017 |
|
RU2681040C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И КОНТРОЛЕМ ПРОЦЕССА МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ | 2017 |
|
RU2655482C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛИНОЙ МЕНЕЕ 8500 м ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ | 2020 |
|
RU2750872C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ | 2018 |
|
RU2751068C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ДОПУСКА ТЕМПЕРАТУРЫ И ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ | 2018 |
|
RU2690905C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ВЫСОКОЙ СКОРОСТЬЮ И СТЕПЕНЬЮ ДЕФОРМАЦИИ | 2018 |
|
RU2690263C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С УДАЛЕНИЕМ ПОВЕРХНОСТНОГО СЛОЯ | 2018 |
|
RU2690264C1 |
Способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии | 2018 |
|
RU2751066C2 |
Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовок проводят путем волочения или прокатки при нагреве заготовок (Тз) до температуры Тз=300-635°С. Скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм, V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм, V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм, V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм, V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм, V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью, пластичностью и низкой анизотропией механических свойств по длине проволоки. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 5 пр.
1. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий, включающий нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов, отличающийся тем, что деформацию заготовки проводят путем волочения или прокатки при нагреве заготовок (Тз) до температуры Тз=300-635°С, а скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки:
V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм,
V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм,
V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм,
V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм,
V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм,
V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм.
2. Способ по п. 1, отличающийся тем, что изготавливают проволоку из титанового сплава, содержащего, мас.%: алюминий 5,50-6,76, ванадий 3,50-4,40, железо ≤0,22, углерод ≤0,05, кислород 0,14-0,18, азот ≤0,03, водород ≤0,015 и титан - остальное.
3. Способ по п. 1, отличающийся тем, что проволока имеет допуск на диаметр -0,05/+0,01 мм.
SU 1520717 A1, 20.09.2001 | |||
SU 1482009 A1, 20.09.2001 | |||
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОЙ ПРОВОЛОКИ ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ | 2011 |
|
RU2460825C1 |
JP 61231150 A, 15.10.1986 | |||
US 20160138149 A1, 19.05.2016. |
Авторы
Даты
2019-03-01—Публикация
2017-02-17—Подача