Изобретение относится к ракетной технике и предназначено для исследования процессов тепломассопереноса в конструкциях ракетных двигателей твердого топлива (РДТТ).
Известны установки, предназначенные для этих целей, например, установка для испытаний теплозащитных покрытий, содержащая газогенератор на твердом топливе, исследуемый элемент конструкции и средства измерения (см., например, книга Ю.В. Полежаева, А.А. Шишкова Газодинамические испытания тепловой защиты. М.: ПромедЭК, 1992 г., с. 133, принятая за аналог).
Однако, данная конструкция модельной установки, в которой исследуемый элемент размещен перпендикулярно струе продуктов сгорания, не позволяет проводить моделирование теплопереноса для наиболее важного случая взаимодействия потока продуктов сгорания со стенкой элементов конструкции РДТТ - для случая продольного обтекания стенки потоком.
Наиболее близкой по технической сущности и достигаемому результату к заявленному изобретению является установка для исследования процессов тепломассопереноса в узлах РДТТ при продольном обтекании стенки исследуемого элемента конструкции (см. книгу под ред. Коротеева А.С. Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива. М.: Машиностроение, 2004, с. 341), содержащая газогенератор на твердом топливе, средства измерения (термодатчики), исследуемый элемент (газовод с цилиндрическим каналом с теплозащитным покрытием) и сопло, принятая за прототип.
Принятая за прототип установка функционирует следующим образом. При работе газогенератора продукты сгорания из газогенератора движутся по цилиндрическому каналу газовода и истекают через сопло. Размещенные на газоводе термодатчики регистрируют температуру в отдельных сечениях газовода. Путем статистической обработки результатов измерений определяются исследуемые параметры тепломассопереноса. Данная конструкция установок используется и для исследования закономерностей тепломассопереноса в проточных частях РДТТ, в которых установлены местные сопротивления, например, в виде диафрагм различной конфигурации. При проведении данных работ используются термодатчики с рабочим спаем на наружной поверхности газовода, так как использование термодатчиков с рабочим спаем на внутренней поверхности газовода нецелесообразно из-за недопустимо большой погрешности измерений, обусловленной налипанием частиц конденсированной фазы в продуктах сгорания на рабочий спай.
Однако, использование данной конструкции установки и схемы размещения термодатчиков приводит к большим погрешностям при идентификации параметров процесса тепломассопереноса, например, при определении размеров зоны локальной интенсификации теплообмена за местным сопротивлением в виде диафрагмы, при значительных значениях градиентов коэффициентов конвективной теплоотдачи от продуктов сгорания к стенке газовода, а, следовательно, и значительных продольных градиентах температуры стенки. Это объясняется искажением температурных полей в области термодатчиков аксиальным перетоком тепла, что является существенным недостатком.
В отличие от прототипа в предлагаемой установке наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.
Задачей предлагаемого изобретения является повышение точности определения параметров тепломассопереноса.
Указанный технический результат при осуществлении изобретения достигается тем, что в известной установке для исследования процессов тепломассопереноса, содержащей газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло, особенность заключается в том, что в ней наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.
Новая совокупность конструктивных элементов, а также наличие связей между ними позволяют, в частности, за счет:
- выполнения наружной поверхности газовода с цилиндрическим каналом с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, резко повысить в исследуемых сечениях газовода с цилиндрическим каналом уровень радиальных тепловых потоков по сравнению с аксиальным тепловым потоком, что позволяет практически исключить влияние аксиального теплового потока на температуру, регистрируемую термодатчиками и повысить за счет этого точность идентификации параметров, например, границ зоны локальной интенсификации теплообмена. Рациональная толщина стенки газовода с цилиндрическим каналом в области граней, в месте размещения термодатчиков, рассчитывается для конкретного варианта установки в зависимости от времени работы газогенератора, типа топлива, конструктивных параметров установки. Для типовых схем газоводов с цилиндрическим каналом, параметров топлив газогенераторов, толщина стенки в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, рассчитываемая по формуле , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях. При уменьшении толщины стенки газовода с цилиндрическим каналом в области граней менее 0,4δ температура в этой зоне может превысить допустимое значение, что приводит к разрушению газовода с цилиндрическим каналом. При увеличении толщины стенки свыше 0,8δ увеличивается погрешность измерения параметров тепломассопереноса.
- размещения термодатчиков в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки обеспечить высокую точность измерений, так как в этой области аксиальным тепловым потоком практически можно пренебречь по сравнению с радиальным потоком, что обеспечивает снижение погрешности измерений.
Сущность изобретения поясняется Фиг., на которой изображена предлагаемая установка с частичным вырезом.
Предлагаемая установка для исследования процессов тепломассопереноса содержит газогенератор 1, соединенный с газоводом 2 с цилиндрическим каналом, в котором установлено местное сопротивление 3. На наружной поверхности газовода 2 с цилиндрическим каналом размещены термодатчики 4, газовод 2 с цилиндрическим каналом соединен с соплом 5. Наружная поверхность газовода 2 с цилиндрическим каналом выполнена с одной или несколькими гранями 6, причем толщина стенки газовода 2 с цилиндрическим каналом в области граней 6 составляет (0,4…0,8) δ, где δ - толщина стенки газовода 2 с цилиндрическим каналом на участке без граней 6, , где Р - давление в газоводе 2 с цилиндрическим каналом, D - диаметр газовода 2 с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода 2 с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода 2 с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики 4 размещены в продольной плоскости, проходящей через ось газовода 2 с цилиндрическим каналом и сечение грани 6 с минимальной толщиной стенки.
Предложенная установка для исследования процессов тепломассопереноса работает следующим образом. После начала работы газогенератора 1 продукты сгорания втекают в газовод 2 с цилиндрическим каналом и через местные сопротивления 3 продолжают движение по газоводу 2 с цилиндрическим каналом и истекают через сопло 5. При движении продукты сгорания за местным сопротивлением 3 образуют рециркуляционную зону, в которой интенсивность теплообмена в несколько раз выше, чем при стабилизированном течении. За счет выполнения наружной поверхности газовода 2 с цилиндрическим каналом с одной или несколькими гранями 6, причем толщина стенки газовода 2 с цилиндрическим каналом в области граней 6 составляет (0,4…0,8) δ, где δ - толщина стенки газовода 2 с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе 2 с цилиндрическим каналом, D - диаметр газовода 2 с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода 2 с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода 2 с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики 4 размещены в продольной плоскости, проходящей через ось газовода 2 с цилиндрическим каналом и сечение грани 6 с минимальной толщиной стенки, обеспечивается снижение погрешности определения параметров тепломассопереноса, в частности, определение границ рециркуляционных зон.
Выполнение установки для исследования процессов тепломассопереноса позволило повысить точность определения параметров теплопереноса на наиболее теплонапряженном участке газового тракта РДТТ.
Изобретение может быть использовано при создании установок для полунатурного моделирования процессов в РДТТ, в том числе для ракет систем залпового огня.
Указанный положительный эффект подтвержден использованием установки, изготовленной в соответствии с предлагаемым изобретением. В настоящее время на установке проводятся работы по определению параметров теплопереноса для разрабатываемых инновационных РДТТ.
название | год | авторы | номер документа |
---|---|---|---|
Двухрежимный ракетный двигатель твердого топлива | 2017 |
|
RU2687500C1 |
Двухрежимный ракетный двигатель твердого топлива | 2022 |
|
RU2790916C1 |
ГАЗОВЫЙ ТРАКТ ЖРД | 2015 |
|
RU2579296C1 |
СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ НА ТВЕРДОМ ТОПЛИВЕ | 2013 |
|
RU2540190C1 |
ВЫСОТНЫЙ СТЕНД ДЛЯ ИСПЫТАНИЙ РАКЕТНЫХ ДВИГАТЕЛЕЙ | 1993 |
|
RU2075742C1 |
ДВУХРЕЖИМНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 2008 |
|
RU2379539C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2168049C2 |
Корпус ракетной части реактивного снаряда | 2022 |
|
RU2791165C1 |
МОДЕЛЬНЫЙ ДВИГАТЕЛЬ ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТРТ В НАПРЯЖЕННО-ДЕФОРМИРОВАННОМ СОСТОЯНИИ | 2002 |
|
RU2201520C1 |
ИМИТАТОР РАКЕТНОГО ДВИГАТЕЛЯ ТВЕРДОГО ТОПЛИВА ДЛЯ НАЧАЛЬНОГО УЧАСТКА РАБОТЫ | 2005 |
|
RU2273753C1 |
Изобретение относится к ракетной технике и предназначено для исследования процессов тепломассопереноса в конструкциях ракетных двигателей твердого топлива (РДТТ). Установка для исследования процессов тепломассопереноса содержит газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло. Наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки. Технический результат - повышение точности определения параметров тепломассопереноса. 1 ил.
Установка для исследования процессов тепломассопереноса, содержащая газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло, отличающаяся тем, что наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, K - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.
ДУНАЕВ В.А., КАШИРКИН А.А., ЕВЛАНОВА О.А., ЕВЛАНОВ А.А., "ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ПОЛУНАТУРНОГО МОДЕЛИРОВАНИЯ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ГАЗОВОДЕ ЗА ДИАФРАГМОЙ", ИЗВЕСТИЯ ТУЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА | |||
ТЕХНИЧЕСКИЕ НАУКИ, Номер 12-1, 2016, С | |||
Способ смешанной растительной и животной проклейки бумаги | 1922 |
|
SU49A1 |
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ МАЛОЦИКЛОВОЙ ТЕРМОУСТАЛОСТИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ В ГАЗОВЫХ ПОТОКАХ | 2013 |
|
RU2546845C1 |
Устройство для измерения гидродинамических и тепловых параметров | 1988 |
|
SU1597706A1 |
Стенд для определения параметров теплообмена при течении газожидкостных струй | 1987 |
|
SU1578611A1 |
Устройство для определения коэффициента теплообмена | 1983 |
|
SU1125525A1 |
US 20100128752 A1, 27.05.2010. |
Авторы
Даты
2019-03-05—Публикация
2017-11-22—Подача