Хладоноситель Российский патент 2019 года по МПК C09K5/00 C09K5/10 C23F11/14 C23F11/18 

Описание патента на изобретение RU2682829C1

Изобретение относится к холодильной и отопительной технике, в частности, к жидким рабочим составам для применения в качестве промежуточного хладоносителя или низкозамерзающего теплоносителя и может быть использовано в химической промышленности в интервале температур от 0 до минус 30 °С.

Известны хладоносители на основе органических солей – ацетатов и формиатов, которые характеризуются низкой температурой (до минус 50 °С) и нетоксичностью.

Недостатком таких хладоносителей является значительная скорость коррозии в присутствии ионов железа. Кроме того, эти хладоносители целесообразно использовать только в закрытых системах.

Известен хладоноситель, который имеет следующий компонентный состав, % масс:

этиловый спирт 15,000-96,70 ингибитор коррозии 0,038-0,39 скипидар 0,010-0,10 вода остальное

В качестве ингибитора коррозии хладоноситель содержит триэтаноламин и фосфорную кислоту в соотношении 5:1. Хладоноситель применим в диапазоне температур от 0 до минус 100 °С, имеет малую вязкость, теплофизические характеристики, близкие к воде, экологически безопасен, не горюч при температурах от плюс 10 °С и ниже.

Недостатком данного хладоносителя является его горючесть и взрывоопасность. Кроме того, хладоносители с высоким содержанием этанола в процессе эксплуатации могут быть использованы не по прямому назначению.

Существует хладоноситель с компонентным составом, % масс:

пропиленгликоль 34,80-39,90 хлорид натрия 12,70-11,40 глюконат натрия 0,22-0,42 вода остальное

Он обладает рядом преимуществ, а именно: применяется в интервале температур от плюс 5 °С до минус 50 °С, обеспечивает снижение коррозионной активности за счет введения ингибитора коррозии – глюконата натрия.

Недостаток – применение только к определенным маркам стали.

Наиболее близкой по технической сущности и достигаемому эффекту является теплопередающая жидкость состава, % масс:

пропиленгликоль 10-65 нитрат натрия 0,003-0,15 бензоат натрия 0,015-0,75 продукты взаимодействия глицерина
с муравьиной кислотой
0,002-0,10
вода остальное

Она способствует замедлению скорости коррозии металлов. Недостаток – невозможность применения для всех материалов в широком интервале температур.

Техническая задача изобретения направлена на снижение коррозионной активности для большего количества материалов, таких как, сталь марки Ст3, чугун марки СЧ 20, медь, алюминий и латунь марки Л 80, представленных в системах охлаждения ДВС и прочих системах терморегуляции, применение его в более широком диапазоне температур и снижение стоимости хладоносителя.

Для решения технической задачи предложен хладоноситель, содержащий нитрат кальция, изопропанол и воду, отличающийся тем, что в него дополнительно введен бихромат калия при следующем соотношении компонентов, масс. %:

нитрат кальция 45,0 изопропанол 10,0 бихромат калия 0,5-1,0 вода остальное

Технический результат достигается за счет того, что введение бихромата калия затрудняет анодное растворение металла в водно-спиртовом растворе нитрата кальция и, вследствие этого, скорость коррозии металла уменьшается.

В качестве основного компонента выбран нитрат кальция, получаемый как побочный продукт при производстве сложных минеральных удобрений. По своим физико-химическим свойствам нитрат кальция близок к солевым растворам на основе хлоридов натрия и кальция, и после стабилизации изопропиловым спиртом может применяться на практике в качестве хладоносителя.

Также, в качестве ингибитора, был опробован моноэтаноламин, однако его коррозионная эффективность по сравнению с бихроматом калия оказалась значительно ниже.

Методика проведения коррозионных испытаний заключалась в следующем.

Исследование коррозионной активности водно-спиртового раствора нитрата кальция проводили при комнатной температуре вольтамперометрическим методом на указанных выше металлах и сплавах, в отсутствие добавок и в присутствии бихромата калия. Использовали трехэлектродную электрохимическую ячейку с хлоридсеребряным электродом сравнения и платиновым вспомогательным электродом. Поляризационные кривые снимали при помощи потенциостата IPC-Compact, изменяя потенциал рабочего стального электрода из катодной в анодную область со скоростью 10 мВ/с. Потенциалы в работе приведены по шкале стандартного водородного электрода. Токи отнесены к геометрической площади исследуемого электрода.

Для определения базовых параметров коррозионного процесса экстраполировали линейные участки анодной и катодной кривых до взаимного пересечения в точке с координатами Екорр (потенциал коррозии) и lgiкорр (iкорр – скорость коррозии в токовых единицах).

Предлагаемый способ поясняется примерами (табл. 1, 2).

Таблица 1

Состав теплопередающей жидкости Теплопередающая жидкость Состав (прототип), мас.% Состав (предлагаемое изобретение), мас.% Пропиленгликоль 10 - Изопропанол - 10 Нитрат кальция - 45 Ингибиторы коррозии Нитрит натрия 0,003 - Бензоат натрия 0,015 - Продукты взаимодействия глицерина с муравьиной килотой 0,002 - Общее кол-во ингибиторов 0,02 0,5-5 Бихромат калия - 0,5-5 Вода остальное остальное

Таблица 2

Коррозионные потери для различных металлов Металл Состав (прототип), мас.% Состав (предлагаемое
изобретение), мас.%
Алюминий 0,018 0,5·10-6 Медь 0,02 1,2·10-6 Сталь 0,07 0,4 Чугун - 0,035 Латунь - 0,1·10-6

Эффективность добавок в отношении коррозионного процесса оценивали по стандартным параметрам: проницаемости, степени ингибиторной защиты, коэффициенту торможения. Эти параметры, найденные по пересечению линейных участков полулогарифмических поляризационных кривых, отвечающих протеканию парциальных процессов на металлы в исследуемой среде, приведены в таблице 3.

Таблица 3

Параметры Сталь 3 Чугун
СЧ20
Медь Латунь Л80 Алюминий
Без добавки К2Сr2О7 Без добавки К2Сr2О7 Без добавки К2Сr2О7 Без добавки К2Сr2О7 Без добавки К2Сr2О7 рН раствора 7,9 7,7 7,9 7,7 7,9 7,7 7,9 7,7 7,9 7,7 Потенциал коррозии Екорр, мВ -331 -443 -168 -201 -108 -91 73 -94 -711 -472 Ток коррозии iкорр, мкА/см2 72 36 8,5 2,93 22 3,3 17 0,4 10 1,8 Скорость коррозии K, г/(м2ч) 0,72 0,36 0,085 0,029 0,0000723 0,0000111 0,0000576 0,0000013 0,0000093 0,0000016 Проницаемость П, мм/год 0,80 0,40 0,094 0,035 8,1*10-6 1,2*10-6 80*10-6 0,1*10-6 3,4*10-6 0,5*10-6 Степень защиты Z, % 50 65 85 97 82 Коэффициент торможения Y 2,0 2,9 6,6 42,5 5,5

Видно, что в присутствии ингибитора скорость коррозии образцов металлов в новом водно-изопропиловом хладоносителе уменьшалась в 2 и более раза.

Добавление в хладоноситель ингибитора бихромата калия (0,5-1 масс.%) позволяет снизить ток коррозии, и связанные с ним параметры коррозионного процесса, замедляет процесс растворения металла, заметно увеличивая величину наклона анодных линейных участков поляризационных кривых. При увеличении содержания бихромата калия более 1 масс.% применение нового хладоносителя является экономически нецелесообразным и нарушает нормативы по коррозионной активности хладоносителей.

Предложенное соотношение компонентов позволяет:

- предотвратить выпадение избытка соли (предел растворимости) в заданном интервале температур (от 0 до минус 300С)

- раствору не замерзать и не расслаиваться.

Выбор пределов бихромата калия определен, исходя из нормативов по коррозионной активности хладоносителей, и подтверждает защитное действие бихромата калия как пассиватора коррозионных процессов. Наиболее устойчивым из всех испытуемых металлов по отношению к новому хладагенту является алюминий.

Список литературы:

1. Геннель, Л. С. Влияние хладоносителей на безопасность пищевой продукции [Текст] / Л. С. Геннель, М. Л. Галкин // Холодильный бизнес, 2003. – № 9. – С. 40.

2. Пат. 2250244 РФ. Хладоноситель для охлаждения и замораживания пищевых продуктов [Текст] / В. В. Макаров, А. А. Петрыкин, В. П. Баранник, А. В. Шамонина. – № 2003116293/04; заявл. 03.06.2003; опубл. 20.04.2005; Бюл. № 11.

3. Пат. 2489467 РФ. Хладоноситель [Текст] / А. В. Бараненко, В. В. Кириллов, О. В. Волкова, А. Е. Сивачёв, А. О. Цимбалист. – № 2011115176/05; заявл. 18.04.2011; опубл. 27.10.2012; Бюл. № 22.

4. Пат. 2296790 РФ. Теплопередающая жидкость [Текст] / Л. С. Геннель, М. Л. Галкин. – № 2005127295/04; заявл. 31.08.2005; опубл. 10.04.2007; Бюл. 10.

Похожие патенты RU2682829C1

название год авторы номер документа
ТЕПЛОНОСИТЕЛЬ-АНТИФРИЗ 1997
  • Юркив Николай Иванович
  • Салех Ахмед Ибрагим Шакер
  • Цигельницкий Игорь Георгиевич
RU2116326C1
ХЛАДОНОСИТЕЛЬ 2002
  • Макаров В.В.
  • Петрыкин А.А.
  • Баранник В.П.
  • Шамонина А.В.
RU2215768C1
ХЛАДОНОСИТЕЛЬ 2011
  • Бараненко Александр Владимирович
  • Кириллов Вадим Васильевич
  • Волкова Ольга Владимировна
  • Сивачёв Александр Евгеньевич
  • Цимбалист Андрей Олегович
RU2489467C2
Состав для фосфатирования металлических поверхностей на основе фосфорной кислоты 2023
  • Трусов Валерий Иванович
  • Жданова Марина Андреевна
  • Ходжаев Рустам Саломович
  • Грибанькова Анжела Алексеевна
  • Мирославов Александр Евгеньевич
  • Сахоненкова Анна Павловна
RU2817628C1
Технологическая жидкость для ликвидации (длительной консервации) нефтяных и газовых скважин (2 варианта) 2016
  • Карапетов Рустам Валерьевич
  • Мохов Сергей Николаевич
  • Бекетов Сергей Борисович
  • Акопов Арсен Сергеевич
RU2650146C1
Тяжёлая технологическая жидкость, состав и способ для её приготовления, способ глушения скважин тяжелой технологической жидкостью 2023
  • Пучина Гульфия Рашитовна
  • Рагулин Виктор Владимирович
  • Сергеева Наталья Анатольевна
RU2817459C1
ХЛАДОНОСИТЕЛЬ ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ ВЕЧНОМЕРЗЛОГО ГРУНТА 2014
  • Галкин Михаил Леонидович
  • Генель Леонид Самуилович
  • Рукавишников Анатолий Михайлович
RU2577056C1
Тяжёлая технологическая жидкость, состав и способ для её приготовления, способ глушения скважин тяжелой технологической жидкостью 2022
  • Пучина Гульфия Рашитовна
  • Рагулин Виктор Владимирович
  • Сергеева Наталья Анатольевна
RU2813763C1
ТЕПЛОПЕРЕДАЮЩАЯ ЖИДКОСТЬ 2005
  • Генель Леонид Самуилович
  • Галкин Михаил Леонидович
RU2296790C1
БЕТОННАЯ СМЕСЬ 2012
  • Шевченко Валентина Аркадьевна
  • Иванова Людмила Алексеевна
  • Киселев Владимир Петрович
  • Панасенко Лариса Николаевна
  • Василовская Галина Васильевна
RU2515639C1

Реферат патента 2019 года Хладоноситель

Изобретение относится к холодильной и отопительной технике, в частности к жидким рабочим составам для применения в качестве промежуточного хладоносителя или низкозамерзающего теплоносителя. Хладоноситель содержит, мас.%: нитрат кальция 45,0, изопропанол 10,0, бихромат калия 0,50 – 1,0, воду – остальное. Технический результат – снижение коррозионной активности, применение хладоносителя в широком диапазоне температур: от 0оС до -30оС и снижение его стоимости. 3 табл.

Формула изобретения RU 2 682 829 C1

Хладоноситель, содержащий нитрат кальция, изопропанол и воду, отличающийся тем, что в него дополнительно введен бихромат калия при следующем соотношении компонентов, мас.%:

нитрат кальция 45,0 изопропанол 10,0 бихромат калия 0,50 – 1,0 вода остальное

Документы, цитированные в отчете о поиске Патент 2019 года RU2682829C1

НИФТАЛИЕВ С.И
и др
Фазообразование в системе нитрат кальция - вода - спирт при отрицательных температурах, Вестник ВГУИТ, 2012, N3, с.140 - 143
ТЕПЛОПЕРЕДАЮЩАЯ ЖИДКОСТЬ 2005
  • Генель Леонид Самуилович
  • Галкин Михаил Леонидович
RU2296790C1
ТЕПЛОНОСИТЕЛЬ-АНТИФРИЗ 1997
  • Юркив Николай Иванович
  • Салех Ахмед Ибрагим Шакер
  • Цигельницкий Игорь Георгиевич
RU2116326C1
ХЛАДОНОСИТЕЛЬ ДЛЯ ОХЛАЖДЕНИЯ И ЗАМОРАЖИВАНИЯ ПИЩЕВЫХ ПРОДУКТОВ 2003
  • Макаров В.В.
  • Петрыкин А.А.
  • Баранник В.П.
  • Шамонина А.В.
RU2250244C2
ХЛАДОНОСИТЕЛЬ 2011
  • Бараненко Александр Владимирович
  • Кириллов Вадим Васильевич
  • Волкова Ольга Владимировна
  • Сивачёв Александр Евгеньевич
  • Цимбалист Андрей Олегович
RU2489467C2
Способ разделения алкалоидов опия 1924
  • Каневская С.И.
  • Родионов В.М.
SU3254A1
CN 104531084 A, 22.04.2015.

RU 2 682 829 C1

Авторы

Нифталиев Сабухи Илич

Кузнецова Ирина Владимировна

Плотникова Светлана Егоровна

Богданова Татьяна Викторовна

Солнцева Ксения Андреевна

Даты

2019-03-21Публикация

2017-12-12Подача