Способ очистки дымовых газов тепловых устройств от токсичных соединений Российский патент 2019 года по МПК B01D53/48 

Описание патента на изобретение RU2684088C1

Изобретение относится к области очистки дымовых газов тепловых устройств от токсичных соединений твердыми адсорбентами и может быть использовано в энергетической, металлургической и других отраслях промышленности.

Известен способ очистки дымовых газов дизельного двигателя или отопительного котла, работающего на дизельном топливе. В качестве адсорбента вредных компонентов выхлопных газов используется гранулированная шлаковая пемза с высокопористой структурой, изготовленная из основных металлургических шлаков, состоящих из оксидов кальция, кремния, алюминия и магния. Высокая основность и пористость гранул позволяют использовать их в качестве адсорбента веществ с кислыми свойствами, к которым относятся вредные примеси, присутствующие в отработавших выхлопных газах (NOx, SOx, СО). [Туркин А.В. Исследование возможности практического применения способа очистки выхлопных газов судового двигателя адсорбцией твердым веществом в присутствии озона. Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. №3, 2014. С. 89-95].

Гранулы шлаковой пемзы диаметром 5-10 мм загружают в перфорированные контейнеры, устанавливаемые в дымовом канале перед дымовой трубой. Продукты горения заполняют пространство между гранулами шлаковой пемзы. Находящиеся в газовой смеси оксиды NO, SOx, СОх адсорбируются на поверхности пор гранул, частично реагируют с избыточным кислородом воздуха, подаваемого на процесс горения, образуя NOx, SO2, CO2. Одновременно на поверхности гранул осаждаются мелкодисперсные пылевые и сажистые частицы. Очищенные выхлопные газы при температуре 70-170°С удаляются через дымовую трубу в атмосферу. Регенерация гранул осуществляется промывкой их водой. Степень очистки дымовых газов от NOx и SO2 составляет 21 и 23%.

Недостатками рассмотренного способа являются невысокая степень очистки дымовых газов от оксидов серы и азота, высокое гидравлическое сопротивление контейнерной загрузки гранулированной пемзы - адсорбента, его невысокая поглотительная способность. При подаче в зону смешения газов и адсорбента высокореакционного окислителя - озона степень денитрификации и десульфуризации увеличивается соответственно в два и три раза. Однако использование озона в производственных условиях связано с высокой энергоемкостью его производства и нежелательно в замкнутых объектах, поскольку он имеет первый класс опасности.

Известен способ сухой сероочистки дымовых газов котельной установки в топке, газоходах и тканевом фильтре путем активации части уловленной высококальциевой золы топлива в пароструйной мельнице, подачи активированной золы в топку котла в количестве до 50% от золы уноса с последующим улавливанием золы с адсорбированным и химически связанным SO2 в тканевом фильтре [Пронин М.С. Совершенствование технологий пылеугольного сжигания канско-ачинских углей с учетом особенностей их органической и минеральной массы: Монография / М.С. Пронин. Красноярск: ИПЦ КГТУ, 2004, с. 160-170].

К недостаткам способа следует отнести повышение интенсивности загрязнения конвективных поверхностей нагрева, так как увеличивается концентрация золы в газах, и невысокая степень очистки дымовых газов от оксидов серы.

Известен способ очистки серосодержащих дымовых газов от оксидов серы [Патент РФ №2457892, МПК BO1D 53/48, BO1D 53/81, БИ №22, 2012]. Способ включает распыление в дымовые газы теплотехнических установок щелочного адсорбента и улавливание твердых частиц перед дымовой трубой. В качестве щелочного адсорбента используют мелкодисперсные частицы активированной негашеной извести или активированного известняка, которые распыляют в дымовые газы с температурой 500-1200°С. Соотношение количества распыляемого щелочного адсорбента и его стехиометрического количества, необходимого для хемосорбции оксидов серы составляет 1-1,4. Улавливание твердых частиц перед дымовой трубой осуществляют путем мокрой очистки дымовых газов. Степень очистки дымовых газов от оксидов серы составляет не менее 85%.

Недостатком этого способа является его технологическое усложнение путем применения перед дымовой трубой дополнительной мокрой очистки в пароэжекционной трубе Вентури. Кроме того, мокрые способы очистки ухудшают способность дымовых газов рассеиваться, в результате чего концентрация SO2 в приземном слое может быть выше допустимых норм.

Наиболее близким к заявляемому по совокупности существенных признаков является способ очистки дымовых газов электролизного производства, содержащих экологически опасные компоненты HF, SO2, СО, путем их просасывания через неподвижный слой адсорбента, установленный в дымовом канале. [Погодаев A.M., Белянин А.В., Якимов И.С., Кирко В.И. Адсорбционные и каталитические свойства нефелинового шлама. Цветные металлы. 2015, №12, с. 53-55]

В качестве адсорбента использован нефелиновый шлам, являющийся отходом глиноземного производства. Он образуется при выщелачивании из спека, полученного при спекании нефелиновой руды и известняка, алюмината натрия (NaAlO2).

Высушенный нефелиновый шлам имеет высокоразвитую поверхность, его основу (80-85%) составляет двухкальциевый силикат (Ca2SiO4). Нефелиновый шлам содержит до 3,5% оксидов железа, что с высокоразвитой поверхностью придает ему свойства катализатора. Нефелиновый шлам содержит также до 2,3% оксида натрия в виде не отмытого алюмината натрия. Выше названные химические соединения вступают в реакции с оксидом серы с образованием сульфидов и сульфатов натрия и кальция, о чем свидетельствуют отрицательные изменения стандартной энергии Гиббса (ΔG°373 k) реакций:

4SO2+8NaAlO2=Na2S+3Na2SO4+4Al2O3, ΔG°373 K=-131 кДж.

2SO2+Ca2SiO4+O2=2CaSO4+SiO2, ΔG°373 K=-672 кДж.

Таким образом, при использовании нефелинового шлама в качестве адсорбента имеют место и адсорбция, и хемосорбция, что обеспечивает ему высокую емкость, как адсорбента.

При осуществлении рассматриваемого способа очистки дымовых газов исходная концентрация фтористого водорода (HF) составляла 428 мг/м3, концентрация оксида серы (SO2) и монооксида углерода (СО) составляла соответственно 730 и 5960 мг/м3. Эффективность поглощения указанных компонентов составила 95-99%.

Недостатком рассмотренного способа является его периодичность и неприемлемость для крупномасштабного производства. При больших объемах технологических газов газоотсасывающая сеть будет иметь высокое гидравлическое сопротивление.

В основу изобретения поставлена задача разработать способ очистки дымовых газов тепловых устройств, работающих на сернистых видах топлива, от токсичных соединений путем эффективного физического и химического адсорбирования вредных составляющих.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе очистки дымовых газов тепловых установок от токсичных соединений взаимодействием нефелинового шлама глиноземного производства с дымовыми газами используют нефелиновый шлам крупностью 0.05-0.2 мм, который подают в поток горячих дымовых газов и выводят из потока дымовых газов вместе с золой, при этом подачу шлама поддерживают равной 1,4÷2,7% вес. от расхода топлива, а также обеспечивают возможность повторной подачи шлама с уловленной золой в систему газоочистки, например, в количестве 6% от расхода топлива.

Химический состав нефелинового шлама включает следующие основные компоненты: SiO2, CaO, Al2O3, Fe2O3, Na2O, K2O, MgO. В отличие от зол тепловых станций, химический состав нефелиновых шламов практически имеет постоянный состав и содержит 55% оксида кальция -основного адсорбирующего вещества.

Эффективность адсорбирования вредных газообразных составляющих зависит от размеров частиц адсорбента. В работе [Буваков К.В. Свойства минеральных сорбентов применительно к технологиям топливосжигания. Диссертация на соискание ученой степени кандидата технических наук. Томский политехнический университет. 2007.] установлено, что поглощательная способность измельченных материалов, состоящих из оксидов кальция, магния, кремния, алюминия, железа изменяется обратно пропорционально в отношении к диоксиду серы и оксидам азота в зависимости от размеров частиц. Например, сорбционная способность золы, включающей аналогичные химические компоненты, уменьшается с возрастанием размера частиц от 0,05 до 0,2 мм в отношении диоксида серы и увеличивается в отношении оксидов азота при возрастании размеров частиц от 0,1 до 0,2 мм.

Это означает, что при адсорбировании золой оксидов серы и азота действуют различные механизмы сорбционного процесса. Для поглощения диоксида серы наиболее важно увеличение удельной поверхности сорбента, достигаемое уменьшением размера частиц, что свидетельствует о наличии хемосорбции. При поглощении оксидов азота, наоборот, сорбция возрастает с увеличением размеров частиц. Следовательно, процесс идет за счет физического взаимодействия в порах, чему благоприятствует увеличение крупных частиц, у которых более развита внутрипоровая структура, чем у мелких. Исходя из изложенного, оптимальными размерами частиц глиноземного шлама, включающего одинаковые с золой химические компоненты, при поглощении оксидов серы и азота следует считать диапазон от 0,05 до 0,2 мм.

Эффективность улавливания токсичных соединений дымовых газов, например SO2, пропорциональна расходу шлама. Большинство котельных и тепловых станций работают на бурых углях с содержанием серы около 0,4%. При идеальном смешении дымовых газов и шлама в горловине реактора и контакте на стенках рукавного фильтра эффективность улавливания SO2 в пределах 90-100% по стехиометрическому расчету по реакциям:

S+O2=SO2,

Ca2SiO4+2SO2=2CaSO4+SiO2

соответствует расходу шлама около 1,4% от расхода угля (таблица). Для других видов сернистого топлива и другом содержании серы расчет теоретического расхода щлама ведется аналогично по приведенным формулам.

В реальных условиях при возможном неполном смешении шлама и газа в горловине реактора и недостаточном времени контакта газа и шлама на стенках рукавного фильтра неполнота протекания процесса адсорбирования компенсируется пропорциональным увеличением расхода шлама до 2,7% от расхода угля при полноте адсорбирования равной 50%. При меньшей эффективности улавливания SO2 существенно возрастают затраты на обслуживание системы газоочистки.

Производственные испытания адсорбции токсичных газов шламом во взвешенном слое на модели рукавного фильтра в виде вращающегося барабана с пересыпающими полками и матерчатым фильтром типа ФРО на выходе из барабана подтвердили высокую эффективность улавливания SO2 и СО дымовых газов котельной установки благодаря высоким адсорбционным и каталитическим свойствам нефелинового шлама.

В случае рециркуляции уловленных в рукавном фильтре шлама-адсорбента и летучей золы расход свежего шлама уменьшится пропорционально увеличению расхода рециркулята. Наиболее рационален повторный возврат смеси уловленных в рукавном фильтре использованного шлама и летучей золы при максимальном расходе свежего шлама порядка 2,7% вес. от расхода угля.

На практике для простоты и надежности регулирования пылевозврата рециркуляцию уловленных продуктов принимают равной 50% (аналог 2). Например, при расходе угля в паровом котле 8,4 т/ч, зольности около 10%, рециркуляции 50% уловленных продуктов количество рециркулята составит около 6% от расхода угля, что при сохранении заявленного верхнего предела расхода шлама на процесс адсрбирования вредных составляющих дымовых газов позволит уменьшить расход свежего шлама в 2 раза.

При большем количестве рециркулята, т.е. более 6% от расхода угля, значительно возрастает количество уловленной золы, препятствующей контакту шлама и вредных газовых компонентов дымовых газов, что приводит к снижению эффективности газоочистки.

При меньшем количестве рециркулята, т.е. менее 6% от расхода угля, расход свежего шлама можно уменьшить, но менее, чем в 2 раза, что не оправдает затраты на организацию пылевозврата.

Похожие патенты RU2684088C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ СЕРОСОДЕРЖАЩИХ ДЫМОВЫХ ГАЗОВ 2010
  • Сталинский Дмитрий Витальевич
  • Мантула Вадим Дмитриевич
  • Дунаев Александр Васильевич
  • Лавошник Александр Семенович
  • Ганжа Георгий Федорович
  • Амшарина Генриэта Ивановна
  • Каненко Галина Матвеевна
RU2457892C1
ВВОД СУХОГО СОРБЕНТА В УСЛОВИЯХ УСТАНОВИВШЕГОСЯ РЕЖИМА В СКРУББЕР СУХОЙ ОЧИСТКИ 2012
  • Джанкура Брайан Дж.
  • Сильва Энтони А.
  • Кампобенедетто Эдвард Дж.
RU2578685C2
СПОСОБ КОМПЛЕКСНОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ 2018
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Левин Игорь Геннадьевич
  • Шатохин Александр Анатольевич
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Петр Николаевич
  • Васинёва Марина Владимировна
  • Завалинская Илона Сергеевна
RU2676642C1
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ПРИ ОСУЩЕСТВЛЕНИИ ПЛАЗМЕННОГО РОЗЖИГА И СТАБИЛИЗАЦИИ ГОРЕНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА 2007
  • Попов Виктор Михайлович
  • Юшин Василий Валерьевич
  • Беседин Андрей Владимирович
  • Бордунова Мария Сергеевна
RU2377053C2
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ 2022
  • Рязановский Александр Дмитриевич
  • Рязановский Дмитрий Владимирович
RU2792383C1
УЛИЧНЫЙ КОНДИЦИОНЕР 2009
  • Ежов Владимир Сергеевич
RU2425293C1
КОМПЛЕКСНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ 2015
  • Ежов Владимир Сергеевич
RU2595289C1
Способ очистки высокотемпературных аэрозолей 2017
  • Суюнов Рамиль Равильевич
RU2674967C1
Производственный комплекс для утилизации твердых бытовых отходов 2021
  • Ярыгин Леонид Анатольевич
  • Клепиков Геннадий Яковлевич
  • Клепиков Роман Геннадьевич
  • Ярыгина Ольга Леонидовна
  • Ярыгин Тихон Леонидович
RU2772396C1
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ТЕПЛОВЫХ ЭЛЕКТРИЧЕСКИХ ЦЕНТРАЛЕЙ ОТ ДИОКСИДА УГЛЕРОДА 2023
  • Ицков Яков Юрьевич
  • Спирин Алексей Викторович
  • Бакун Елена Юрьевна
  • Климов Евгений Владимирович
  • Казачков Владислав Валентинович
  • Абрамов Григорий Владимирович
  • Вайлерт Андрей Викторович
RU2807935C1

Реферат патента 2019 года Способ очистки дымовых газов тепловых устройств от токсичных соединений

Изобретение относится к области очистки от токсичных соединений дымовых газов тепловых устройств, работающих на сернистых видах топлива, твердыми адсорбентами, например, шламовыми отходами глиноземного производства и может быть использовано в энергетической, металлургической и других отраслях промышленности. Описан способ очистки дымовых газов тепловых установок от токсичных соединений взаимодействием нефелинового шлама глиноземного производства с дымовыми газами, отличающийся тем, что используют нефелиновый шлам крупностью 0,05-0,2 мм, который подают в поток горячих дымовых газов и выводят из потока дымовых газов вместе с золой, при этом подачу шлама поддерживают равной 1,4-2,7% вес. от расхода топлива. Технический результат состоит в том, что способ позволяет повысить эффективность очистки дымовых газов тепловых устройств. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 684 088 C1

1. Способ очистки дымовых газов тепловых установок от токсичных соединений взаимодействием нефелинового шлама глиноземного производства с дымовыми газами, отличающийся тем, что используют нефелиновый шлам крупностью 0,05-0,2 мм, который подают в поток горячих дымовых газов и выводят из потока дымовых газов вместе с золой, при этом подачу шлама поддерживают равной 1,4-2,7% вес. от расхода топлива.

2. Способ по п. 1, отличающийся тем, что возможна повторная подача шлама с уловленной золой в систему газоочистки, например, в количестве до 6% вес. от расхода топлива.

Документы, цитированные в отчете о поиске Патент 2019 года RU2684088C1

US 5830388 A1, 03.11.1998
US 4135917 A1, 23.01.1979
СПОСОБ УТИЛИЗАЦИИ ШЛАМОВ АЛЮМИНИЕВОГО ПРОИЗВОДСТВА 2016
  • Сторожев Юрий Иванович
  • Погодаев Александр Михайлович
  • Гавриленко Людмила Владимировна
  • Зенкин Евгений Юрьевич
  • Белянин Александр Владимирович
RU2620844C1

RU 2 684 088 C1

Авторы

Сторожев Юрий Иванович

Погодаев Александр Михайлович

Поляков Петр Васильевич

Мальчик Станислав Вячеславович

Козлов Сергей Георгиевич

Афанасин Владимир Анатольевич

Черменев Иван Викторович

Даты

2019-04-03Публикация

2018-06-28Подача