Теплообменная поверхность Российский патент 2019 года по МПК F28F3/04 

Описание патента на изобретение RU2684303C1

Изобретение относиться к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена (Патент РФ №2425260, МПК F15D 1/10 (2006.01) Заявка 2009111020/06 от, 31.08.2006, опубликовано 27.07.2011 Бюл. №21). Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены выемки, образованные сопряженными по общим касательным выпуклыми и вогнутыми поверхностями второго порядка, при этом сопряжение выемки с исходно гладкой поверхностью осуществляется с помощью выпуклых поверхностей образующих скаты, для которых в местах сопряжения исходно гладкая поверхность является касательной, причем вогнутая поверхность, образующая донную часть выемки, выполнена гладкой или с обтекателем.

Наиболее близким аналогом к заявляемому изобретению являются теплообменные поверхности с овальными выемками (Isaev S.A., Leont'ev А.I., Kornev N.V., Hassel Е., and Chudnovskii Ya. P. Heat-Exchange Enhancement for Laminar and Turbulent Flows in a Narrow Channel with One-Row Oval Dimples // High Temperature, 2015, Vol. 53, No. 3, pp. 375-387). Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены овальные выемки, состоящие из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной 1. Приведенные результаты численных исследований показывают, что использование данной поверхности с овальными выемками (относительной глубиной h/b=0,2; относительным удлинением l/b=0,8; радиусом скругления кромок r/b=0,25; угол натекания потока на овальную выемку ϕ=45°) позволяет повысить уровень коэффициентов теплоотдачи на ней до Nu/Nuгл=1,61 раза при ламинарном режиме течения (Re=2500) при росте коэффициентов гидросопротивления в ξ/ξгл=1,31 раза по сравнению с гладкой поверхностью, что обеспечивает значения фактора теплогидравлической эффективности (аналогии Рейнольдса) на уровне (Nu/Nuгл)/(ξ/ξгл)=1,23. Использование теплообменной поверхности с овальными выемками при турбулентном режиме течения (Re=20000) позволяет повысить уровень коэффициентов теплоотдачи на ней до Nu/Nuгл=1,52 раза при росте коэффициентов гидросопротивления в ξ/ξгл=1,73 раза по сравнению с гладкой поверхностью, что обеспечивает значения фактора теплогидравлической эффективности (аналогии Рейнольдса) на уровне (Nu/Nuгл)/(ξ/ξгл)=0,88. Исследования на основе численного моделирования, методология которого изложена в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316 с.), прошла многочисленные аппробации и верификации, реализована в программном комплексе "VP2/3 Thermophysics" (Программный комплекс "VP2/3 Thermophysics" для численного моделирования вихревой интенсификации теплогидродинамических процессов в теплообменных аппаратах / Исаев С.А., Баранов П.А., Усачов А.Е. // Свидетельство о государственной регистрации программы для ЭВМ №2015619439. Дата поступления 08.06.2015. Дата регистрации 03.09.2015).

Однако известные теплообменные поверхности характеризуются недостаточной теплогидравлической эффективностью.

Технической проблемой, на решение которой направлено заявляемое изобретение, является повышение теплогидравлической эффективности.

Технический результат, на достижение которого направлено данное изобретение, заключается в увеличении тепловой и теплогидравлической эффективности.

Технический результат достигается за счет того, что теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя выполнена в виде периодически нанесенных углублений. Новым является то, что углубления выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной , развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями:

или ;

ϕ=45°;

h/b=0,18-0,37;

r=0,0256;

- длина цилиндрической части выемки, мм;

- длина выемки, мм;

h - глубина, мм;

b - ширина выемки, мм;

r - радиус скругления кромок выемки, мм;

ϕ - угол натекания потока на выемку, градусы.

Перечень фигур:

На фигуре 1 представлена геометрия предлагаемой теплообменной геометрии с условным обозначением геометрических размеров и направления течения потока относительно теплообменной геометрии.

На фигуре 2 представлен поперечный срез предлагаемой геометрии в сечении А-А обозначенном на фигуре 1 с указанием условных обозначений геометрических размеров.

В таблице 1 показаны параметры овально-траншейных выемок, которые были использованы в анализе теплогидравлической эффективности в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013.316 c.).

В таблице 2 представлены характеристики эффективности выемок переменной ширины по результатам сравнительного анализа.

Данная геометрия выемок является поверхностным генератором спиралевидных высокоинтенсивных моновихрей и позволяет повысить скорость вторичного течения до величин порядка характерной скорости потока в стесненном канале (среднемассовой или максимальной), что в несколько раз превышает скорости вторичного течения, индуцированные традиционными сферическими выемками, и отличается высокой стабильностью и интенсивностью вихревого течения в следе за ним по сравнению со сферическим аналогом, предложенными в (Поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена / Кикнадзе Г.И., Гачечиладзе И.А. // Патент РФ №2425260. Заявка 2009111020/06 от, 31.08.2006. Опубликовано 27.07.2011 Бюл. №21) и овальными выемками, описанными в (Isaev S.A., Leont'ev A.I., Kornev N.V., Hassel Е., and Chudnovskii Ya. P. Heat-Exchange Enhancement for Laminar and Turbulent Flows in a Narrow Channel with One-Row Oval Dimples // High Temperature, 2015, Vol. 53, No. 3, pp. 375-387), обеспечивая значительное превосходство овально-траншейных выемок по тепловой и теплогидравлической эффективности.

Сравнительный анализ теплообменных поверхностей с аналогом (сферической выемки), прототипом (овальной выемки) и предлагаемой формой интенсификатора теплообмена в форме овально-траншейной выемки проводился на основе численного моделирования, методология которого описана в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316 с.), прошла многочисленные аппробации и верификации, реализована в программном комплексе "VP2/3 Thermophysics" (Программный комплекс "VP2/3 Thermophysics" для численного моделирования вихревой интенсификации теплогидродинамических процессов в теплообменных аппаратах / Исаев С.А., Баранов П.А., Усачов А.Е. // Свидетельство о государственной регистрации программы для ЭВМ №2015619439. Дата поступления 08.06.2015. Дата регистрации 03.09.2015).

Сравнительный анализ теплообмена на теплообменных поверхностях с аналогом (сферической выемки), прототипом (овальной выемки) и предлагаемой формой интенсификатора теплообмена в форме овально-траншейной выемки проведен в канале прямоугольного сечения шириной B=2,5⋅dк и высотой H=0,33⋅dк. В качестве характерного размера выбран диаметр сферической выемки, нормированный как dк=1. Методически важно было зафиксировать площадь пятна выемки и его относительную глубину h/dк=0,13(h/b=0,18-0,37) (фактически выемки оказываются равнообъемными). Относительная глубина выемок составляет h/dк=0,13 Выемки располагаются на некотором расстоянии от входа в канал, выбранном из условия их незначительного влияния на входные условия. Радиус скругления кромок принимается равным r=(0,025 dк). При сохранении площади пятна овально-траншейной выемки, равного площади пятна базовой сферической выемки, ее ширина изменяется в переделах b=(0,731…0,346)⋅dк, а удлинение, отнесенное к ширине, составило (фиг. 1 и табл. 1). Угол наклона овально-траншейной выемки принят равным ϕ=45°. Число Рейнольдса выбрано равным Red=104 (ReH=3333).

Суммарное число Нуссельта Nu0(1) рассчитывается на контрольной площади прямоугольного участка без выемки и с выемкой Nu(1). Гидравлические потери определяются по границам контрольного участка с выемкой ξ(1) и плоской поверхности ξ0(1). Эффективность Е'=(Nu(1)/Nu0(1))/(ξ(1)0(1)), определяемая по критерию аналогии Рейнольдса, рассчитывается как отношение тепловой эффективности Nu(1)/Nu0(1) на выделенном участке к относительным гидравлическим потерям ξ(1)0(1) на границах участка.

В ходе численных исследований показано, что с увеличением удлинения овально-траншейной выемки до теплогидравлические характеристики прямоугольного участка канала с выемкой кардинально улучшаются E'(1)=1,163 по сравнению со сферической выемкой E'(1)=1,002. Причем для сферической выемки Е'<1 при учете увеличения площади омываемой стенки канала (табл. 2). Темп возрастания тепловой эффективности значительно опережает рост гидравлических потерь. Тепловая эффективность овально-траншейной выемки при в 6 раз выше (Nu(1)/Nu0(1)=1,243), чем у сферической выемки без учета площади внутренней поверхности (Nu(1)/Nu0(1)=1,063), и в 4 раза выше при учете площади поверхности выемки (Nu(1)/Nu0(1)=1,19 против Nu(1)/Nu0(1)=1,054). Гидравлические потери на участке с овальной выемкой имеют максимум при ширине выемки b=0,549 (длина полуцилиндрической вставки ), который в 1,5 раза превышает гидравлические потери в случае сферической выемки. Гидравлические потери на участке с овально-траншейной выемкой (), оказались наименьшими и всего лишь в ξ(1)0(1)=1,13 раза выше потерь для участка с базовой сферической выемкой.

Таким образом, сравнение предлагаемой конструкции теплообменной поверхности с овально-траншейными выемками по теплогидравлической эффективности (критерию аналогии Рейнольдса) с поверхностями со сферическими и овальными выемками показывает их преимущество при соблюдении геометрических соотношений размеров выемки: или ; ϕ=45°; h/b=0,18-0,37; r=0,025b.

Похожие патенты RU2684303C1

название год авторы номер документа
Теплообменная поверхность 2021
  • Исаев Сергей Александрович
  • Леонтьев Александр Иванович
  • Гортышов Юрий Федорович
  • Попов Игорь Александрович
  • Миронов Александр Александрович
  • Скрыпник Артем Николаевич
  • Аксянов Рустем Айдарович
RU2768667C1
Теплообменная поверхность 2019
  • Исаев Сергей Александрович
  • Баранов Павел Андреевич
  • Гортышов Юрий Федорович
  • Леонтьев Александр Иванович
  • Попов Игорь Александрович
  • Щелчков Алексей Валентинович
  • Миронов Александр Александрович
  • Скрыпник Артем Николаевич
RU2716958C1
Теплообменная поверхность для интенсификации теплоотдачи 2022
  • Сидорчева Валерия Викторовна
  • Цынаева Анна Александровна
RU2777179C1
ТЕПЛООБМЕННАЯ ТРУБА 2013
  • Олимпиев Вадим Владимирович
  • Мирзоев Бабек Гаджибек Оглы
RU2511859C1
ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ 2018
  • Щукин Андрей Викторович
  • Ильинков Андрей Владиславович
  • Такмовцев Владимир Викторович
  • Хабибуллин Ильмир Ильдарович
  • Зарипов Ильнар Шавкатович
RU2675733C1
ТЕПЛООБМЕННАЯ ТРУБА 2012
  • Олимпиев Вадим Владимирович
  • Мирзоев Бабек Гаджибек Оглы
RU2508516C1
ТЕПЛООБМЕННАЯ ТРУБА 2002
  • Мунябин К.Л.
RU2231007C2
ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ ДЛЯ ИНТЕНСИФИКАЦИИ ТЕПЛООТДАЧИ ТУРБУЛЕНТНОГО ПОТОКА ТЕПЛОНОСИТЕЛЯ 2023
  • Гувернюк Сергей Владимирович
  • Зубин Михаил Адольфович
  • Симоненко Михаил Михайлович
  • Синявин Алексей Александрович
RU2807858C1
ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ 2020
  • Горелов Юрий Генрихович
  • Назаров Александр Алексеевич
RU2751425C1
СПОСОБ ДЕМОНСТРАЦИИ ДВУХ МОД ВИХРЕВОГО РЕЗОНАНСА ПРИ ВРАЩЕНИИ ЖИДКОСТИ ВОКРУГ ЗАТОРМОЖЕННОГО ЯДРА И СПОСОБ СРАВНЕНИЯ РАЗМЕРОВ ВИХРЕЙ 2006
  • Гохштейн Александр Яковлевич
RU2323482C2

Иллюстрации к изобретению RU 2 684 303 C1

Реферат патента 2019 года Теплообменная поверхность

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных выемок, которые выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку и с оптимальной геометрической формой. Технический результат - повышение теплогидравлической эффективности теплообменной поверхности. 2 ил., 2 табл.

Формула изобретения RU 2 684 303 C1

Теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных выемок, отличающаяся тем, что выемки выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями:

l/b=4,7-5,78 или lк/b=5,57-6,78;

ϕ=45°;

h/b=0,18-0,37;

r=0,025b;

l - длина цилиндрической части выемки, мм;

lк - длина выемки, мм;

h - глубина, мм;

b - ширина выемки, мм;

r - радиус скругления кромок выемки, мм;

ϕ - угол натекания потока на выемку, градусы.

Документы, цитированные в отчете о поиске Патент 2019 года RU2684303C1

ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ (ВАРИАНТЫ) 2014
  • Хабибуллин Ильмир Ильдарович
  • Ильинков Андрей Владиславович
  • Щукин Андрей Викторович
  • Такмовцев Владимир Викторович
RU2569540C1
ПОВЕРХНОСТЬ ОБТЕКАНИЯ ДЛЯ ФОРМИРОВАНИЯ ДИНАМИЧЕСКИХ ВИХРЕВЫХ СТРУКТУР В ПОГРАНИЧНЫХ И ПРИСТЕННЫХ СЛОЯХ ПОТОКОВ СПЛОШНЫХ СРЕД 1992
  • Кикнадзе Геннадий Ираклиевич
  • Гачечиладзе Иван Александрович
  • Олейников Валерий Григорьевич
RU2020304C1
WO 2004083651 A1, 30.09.2004
US 20130299036 A1, 14.11.2013
Устройство для подвески баскетбольного щита 1979
  • Дмитриев Дмитрий Владимирович
  • Голубович Светлана Васильевна
  • Ерлихман Майя Соломоновна
SU935115A1

RU 2 684 303 C1

Авторы

Исаев Сергей Александрович

Баранов Павел Андреевич

Гортышов Юрий Федорович

Леонтьев Александр Иванович

Попов Игорь Александрович

Щелчков Алексей Валентинович

Миронов Александр Александрович

Скрыпник Артем Николаевич

Даты

2019-04-05Публикация

2018-06-13Подача