Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.
Известна теплообменная труба [Гортышов Ю.Ф., Олимпиев В.В., Абдрахманов А.Р. Расчет турбулентной теплоотдачи и сопротивления в каналах с поперечными кольцевыми канавками. // Изв. вузов. Авиационная техника. 1997. №3. С.56-68], канал которой выполнен с узкими кольцевыми канавками на внутренней поверхности трубы (канал «1»). В этом канале взаимодействие потока и стенки и существо механизма ИТО (интенсификации теплообмена) полностью определяется теплообменом и трением в пристенных внутренних пограничных слоях (ВПС) 1 и 2, турбулизацию которых обеспечивает рециркуляционная зона (РЗ). Совершенство механизма ИТО заключается в том, что в канале РЗ размещена в канавке, что позволяет сократить размеры РЗ. Опыты с кольцевыми канавками проведены только для наружной поверхности труб в межтрубном потоке теплообменного аппарата (ТА), в ограниченном диапазоне характеристических параметров -
Наиболее близким аналогом к заявляемому изобретению является теплообменная труба [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор). // Теплофизика высоких температур. 2007. №6. С.925-953], канал которой выполнен с выступами и канавками (канал «2»). В канале «2» в качестве интенсификатора теплообмена (ИТ) служат узкие выступы на внутренней поверхности трубы (l<t, где l - длина канавки, t - длина типового участка канала с выступом и канавкой). Идея схемы потока следующая. После каждого выступа образуется РЗ1, на поверхности которой и далее за точкой присоединения xk≈6h, где h - высота выступа, развивается турбулентный внутренний пограничный слой - ВПС1 (толщиной δ). Под РЗ1 формируется возвратный ВПС2 (Малая Р32 не учитывается). Участок канала с шагом t - типовой (повторяющийся). Теплогидродинамическое взаимодействие потока со стенкой полностью определяется процессами переноса внутри ВПС1 и 2. Основной вклад в интенсификацию теплообмена вносят факторы повышенной теплоотдачи в зоне присоединения и малого термического сопротивления тонкого обновленного турбулизированного ВПС1 за точкой присоединения. Главное назначение отрывной рециркуляционной области течения - РЗ1 - производство дополнительной турбулентности, воздействие которой на обновленный ВПС1 стимулирует процесс теплообмена около стенки (Отрыв потока, обновление ПС и образование РЗ1 - результат действия выступа).
Недостатком известных теплообменных труб является высокое гидросопротивление и низкая эффективность.
Задачей, на решение которой направлено заявляемое изобретение, является повышение энергетической эффективности за счет снижения гидросопротивления.
Технический результат достигается тем, что в теплообменной трубе, согласно заявляемому изобретению, канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями
l2=(90-100)h; l1=(90-100)h; l'/l1=0,05; h/D=0.03,
где
l2 - длина канавки, мм,
l1 - длина выступа, мм,
l'- длина участка выступа между неглубокими канавками, мм,
h - высота выступа, мм,
D - внутренний диаметр теплообменной трубы, мм.
Сущность изобретения поясняется чертежами и таблицей, где на фиг.1 изображен канал предлагаемой теплообменной трубы (канал «3»), на фиг.2, 3, 4, табл.1 показаны результаты расчетов эффективности (интенсивность теплоотдачи, коэффициент гидравлического сопротивления, относительный энергетический коэффициент) каналов «7», «2» и «3».
Таким образом, для достижения технического результата предложена заявляемая конструкция теплообменной трубы, канал которой (канал «3») является последовательностью широких канавок l2=(90-100)h и широких выступов l1=(90-100)h, на выступах которого в качестве дополнительных ИТ используются дискретные поперечные к потоку канавки 4 (одна или несколько). Модель течения (и механизм ИТО) в канале «3» основывается на тонких (обновленных) внутренних пограничных слоях - ВПС1, ВПС2 и ВПС3, которые турбулизируются (под воздействием внешней турбулентности) вихревыми возмущениями от рециркуляционной зоны РЗ1, образующейся за обратным уступом при входе потока в канавку (l2), и возмущениями, возникающими на прямом уступе при натекании потока на выступ (Р32) и канавкой 4. При h/D<0.05 происходит быстрая перестройка ВПС1 и ВПС3 к состоянию «стандартного» турбулентного ПС (ТПС) на гладкой стенке [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) // ТВТ. 2007. №6. С.925-953]. При соотношениях толщин соответствующих пограничных слоев и пристенное течение в канале можно рассматривать как течение на плоской стенке, и для расчета ВПС воспользоваться моделью пограничного слоя на пластине. Предлагаемая в данной работе модель расчета канала «3», построенная на основе представлений по ВПС, подобна тем, формирующимся при обтекании ИТ, что использовались в [Олимпиев В.В. Расчет теплообмена и гидросопротивления турбулентного потока в дискретно шероховатых каналах. //Изв. вузов. Авиационная техника. 1991. №4. С.69-72. Олимпиев В.В. Анализ результатов расчета по модели внутренних пограничных слоев теплоотдачи и сопротивления труб с поперечными кольцевыми выступами.// Изв. вузов. Авиационная техника. 1995. №3. С.103-106].
Расчет канала «3» строится следующим образом. Местные коэффициенты теплоотдачи для ВПС1 на отрезке от хк до l2 вычисляются по соотношению
где число Нуссельта Nux=αx/λ; х - текущая координата; λ - коэффициент теплопроводности теплоносителя (жидкости); Rex=wx/v; w - среднерасходная скорость жидкости в канале; ν - кинематический коэффициент вязкости жидкости; Tw, Tf - температуры стенки и потока.
Затем вводится поправка αхист,αx, учитывающая влияние внешней турбулентности Tu на теплоотдачу в ВПС1 [Жукаускас А.А. Конвективный перенос в теплообменниках. М.: Наука. 1982]
где αхист - истинное значение коэффициента местной теплоотдачи; Tu - локальное значение степени турбулентности; Tumax=10% (или 0.1) [Олимпиев В.В. Расчет теплообмена и гидросопротивления турбулентного потока в дискретно шероховатых каналах // Изв. вузов. Авиационная техника. 1991. №4. С.69-72. Олимпиев В.В. Анализ результатов расчета по модели внутренних пограничных слоев теплоотдачи и сопротивления труб с поперечными кольцевыми выступами // Изв. вузов. Авиационная техника. 1995. №3. С.103-106.], Tumax - максимальное значение Tu.
Местные коэффициент сопротивления и касательное напряжение τwx трения для ВПС1 рассчитываются по формулам
где ρ - плотность теплоносителя.
Расчет для ВПС3 (на отрезках l') проводится аналогично ВПС1.
Локальные коэффициенты теплоотдачи для ВПС2 (на длине РЗ1 - L) вычисляются с помощью универсальной функции для обратного уступа αx2/αxk=f(x/xk) [Основы теплопередачи в авиационной и ракетно-космической технике. / Под общ. ред. B.C. Авдуевского и др. М.: Машиностроение. 1992.], где рассчитывается по формуле (1) при x=xk. Трение для ВПС2 рассчитывается аналогично.
Осреднение местных параметров ВПС1, ВПС2 и ВПС3 позволяет получить средние значения коэффициента теплоотдачи α и касательного напряжения трения τw на участке t (и во всем канале).
Суммарные потери давления на этом участке можно рассчитать по формуле
где Δpmp=Rmp/(πD2/4) - потери давления на трение, Rmp=πDtτw - сила трения; Δpp и Δpc - местные потери давления на внезапные расширение и сужение канала при обтекании канавки l2 (определяются по [Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение. 1992]). Коэффициент сопротивления ξ на участке t (и во всем канале) рассчитывается из формулы Дарси
Расчеты проводились для тех же условий, что и в [Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективность промышленно перспективных интенсификаторов теплоотдачи // Изв. РАН. Энергетика. 2002. №3. С.102-118]. Относительная высота выступа была принята из рекомендованного в [Эффективные поверхности теплообмена / Э.К. Калинин, Г.А. Дрейцер, И.З. Копп, А.С. Мякочин. М.: Энергоатомиздат, 1998.] диапазона, а число Рейнольдса составляла 104-106. Были проведены многовариантные расчеты с различными сочетаниями геометрических параметров ИТ для каналов всех типов. При расчете канала «3» параметр l'/l1 изменялся в пределах 0-1.
В качестве критерия эффективности канала и оптимального выбора размера ИТ, как и в работах [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) //ТВТ. 2007. №6. С.925-953. Rudy M.P. et all. Developments in Enhanceed Heat Transfer Technology from a Petroleum Industry Perspective in 2012// Proceedings of the ASME 2012 Heat Transfer Conference. July 8-12, 2012, Puerto Rico.] служил относительный энергетический коэффициент
,
где Nuгл и ξгл - число Нуссельта и коэффициент сопротивления трения для гладкого канала.
При сопоставлении вариантов для канала одного типа (при каждом значении числа Рейнольдса) показателем наиболее высокой эффективности канала и оптимальных размеров ИТ являлось максимальное значение относительного энергетического коэффициента, для которого даны все материалы расчетов.
Некоторые результаты расчетов для всех каналов даны в табл.1 и на фиг.2-4. При детальной оценке можно отметить, что
Размерные коэффициенты ξ для всех каналов автомодельны относительно числа Re-ξ/(Re), - что свойственно дискретной и песчано - зернистой шероховатости Никурадзе в режиме полного проявления шероховатости. Расчеты подтвердили сделанное в настоящей работе предположение - сопротивление канала «1» оказалось несколько меньше
В равных условиях эффективность канала «3» выше, чем показатель проверенного практикой высокоэффективного канала «2», фиг.4.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛООБМЕННАЯ ТРУБА | 2012 |
|
RU2508516C1 |
ТЕПЛООБМЕННАЯ ТРУБА | 2012 |
|
RU2496072C1 |
Теплообменная поверхность | 2018 |
|
RU2684303C1 |
ТЕПЛООБМЕННЫЙ ЭЛЕМЕНТ | 1999 |
|
RU2178132C2 |
Теплообменная поверхность для интенсификации теплоотдачи | 2022 |
|
RU2777179C1 |
ТЕПЛООБМЕННАЯ ТРУБА | 2002 |
|
RU2231007C2 |
Теплообменная поверхность | 2021 |
|
RU2768667C1 |
ТЕПЛООБМЕННАЯ ТРУБА | 1995 |
|
RU2096716C1 |
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК | 2008 |
|
RU2391613C1 |
ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ | 2018 |
|
RU2675733C1 |
Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями: l2=(90-100)h; l1=(90-100)h; l'/l1=0,05; h/D=0.03, где l2 - длина канавки, мм; l1 - длина выступа, мм; l' - длина участка выступа между неглубокими канавками, мм; h - высота выступа, мм; D - внутренний диаметр теплообменной трубы, мм. Технический результат - повышение энергетической эффективности за счет снижения гидросопротивления. 4 ил., 1 табл.
Теплообменная труба, канал которой выполнен с канавками и выступами, отличающаяся тем, что канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями
l2=(90-100)h; l1=(90-100)h; l'/l1=0,05; h/D=0.03,
где
l2 - длина канавки, мм,
l1 - длина выступа, мм,
l' - длина участка выступа между неглубокими канавками, мм,
h - высота выступа, мм,
D - внутренний диаметр теплообменной трубы, мм.
ПОВЕРХНОСТЬ ТЕПЛООБМЕНА | 1991 |
|
RU2031348C1 |
ПОВЕРХНОСТЬ ТЕПЛООБМЕНА | 1991 |
|
RU2031348C1 |
УСТРОЙСТВО ДЛЯ ИНТЕНСИФИКАЦИИ КОНВЕКТИВНОГО ТЕПЛООБМЕНА | 1994 |
|
RU2078296C1 |
US 0006173762 В1 (KOBE STEEL LTD) 16.01.2001 | |||
JP 2006322661 А (FURUKAWA ELECTRIC CO LTD) 30.11.2006. |
Авторы
Даты
2014-04-10—Публикация
2013-01-09—Подача