Установка сухой очистки дымовых газов от кислых компонентов Российский патент 2019 года по МПК B01D53/00 

Описание патента на изобретение RU2687410C1

Изобретение относится к области переработки промышленных и бытовых отходов и может использоваться для сухой очистки дымовых газов от кислых компонентов методов хемосорбции в процессах термического обезвреживания промышленных и бытовых отходов.

Известен способ селективной очистки пирогаза от сероуглерода и двуокиси углерода (RU 2515300 С1, 10.05.2014) путем их абсорбции водным поглотительным раствором с последующей регенерацией отработанных поглотительных растворов и рециркуляцией очищенных поглотительных растворов на абсорбцию, при этом контактирование пирогаза с поглотительным раствором проводят последовательно в два этапа, на первом этапе поглощают сероводород, а на втором этапе - двуокись углерода, причем абсорбцию сероводорода осуществляют водным раствором бикарбоната натрия с pH среды 7,5-8,5, а в отработанный, после поглощения сероводорода, раствор добавляют гидроокись железа с дозой 3-6 г на 1 г сульфида, затем регенерируют продувкой воздухом, отстаивают и полученный после отстаивания водный раствор бикарбоната натрия возвращают на абсорбцию первого этапа, а осажденный раствор гидроокиси железа вновь участвует в технологическом цикле для регенерации отработанного при поглощении сероводорода раствора; на втором этапе двуокись углерода поглощают водным раствором карбоната натрия с pH≥11, образованный, после поглощения двуокиси углерода, раствор, содержащий бикарбонат натрия, регенерируют, подвергая термическому разложению при температуре 60-200°C с получением раствора карбоната натрия, который возвращают на абсорбцию второго этапа. Установка для осуществления способа содержит первый абсорберы, реактор для переработки отработанного поглотительного раствора, регенератор для отделения серы и отстойник.

Недостатком этого способа и установки является:

1) необходимость использовать водные растворы химических реагентов на всех этапах очистки пирогаза, что требует поддержания положительных температур в зимний период;

2) сложный контроль за поддержанием равновесных концентраций растворимости химических реагентов и продуктов газоочистки;

3) дополнительный расход энергии на нагрев раствора гидрокарбоната натрия с целью его регенерации.

Известна установка сухой очистки отходящих газов электролитического производства алюминия (RU 2339743 С2, 27.11.2008), которая содержит реактор-адсорбер с узлом для ввода очищаемого газа, узлом подачи свежего глинозема, узлом для ввода в реактор отработанного глинозема, установленным выше горловины реактора, газораспределительным устройством, соединенным с выходной частью реактора и выполненным в виде короба в нижней части которого под углом друг к другу установлены направляющие пластины. Короб газораспределительного устройства соединен с выходной частью реактора и с входной частью рукавного фильтра. Узел ввода в реактор свежего глинозема оснащен форсункой с раструбом, установленным выше горловины реактора. Форсунка снабжена насадкой, установленной внутри раструба. Насадка установлена внутри раструба с возможностью перемещения. Узел ввода свежего глинозема соединен с бункером свежего глинозема линией транспортировки. Узел ввода в реактор отработанного глинозема соединен линией рециркуляции с бункером-накопителем рукавного фильтра. Фильтрационная камера рукавного фильтра снабжена устройством импульсной продувки и соединена газопроводом с дымовой трубой для выброса очищенного газа в атмосферу. Бункер-накопитель отработанного глинозема рукавного фильтра соединен линией транспортировки с бункером отработанного глинозема, снабженным пневмокамерным насосом для подачи отработанного глинозема в корпуса электролиза. Для создания разрежения в системе газоочистки в конце трубопровода перед дымовой трубой установлен вентилятор. Устройство позволяет эффективно (более 99%) производить очистку отходящих газов электролитического производства алюминия, но вместе не лишено ряда недостатков:

1) высокие удельные энергетические затраты на рециркуляцию глинозема, связанные с необходимостью создания виброкипящего слоя частиц глинозема напорным потоком воздуха, подаваемым под решетку;

2) высокие абразивные нагрузки на стенки реактора;

3) высокая вероятность возврата крупнокускового отработанного глинозема из бункера-накопителя рукавного фильтра на решетку в реакционную зону распылительной форсунки., что приводит к дополнительному аэродинамическому сопротивлению и возрастанию энергетических затрат.

Тем не менее, по своему назначению, наличию сходных признаков данное техническое решение принято в качестве ближайшего аналога.

Задачей предлагаемого технического решения очистки дымовых газов в установке на базе реактора сухой сорбции является повышение технико-экономических показателей процесса газоочистки.

Поставленная задача решается установкой очистки дымовых газов от кислых компонентов, содержащей последовательно соединенные полый форсуночный скруббер, реактор сухой сорбции и рукавный фильтр, при этом реактор сухой сорбции включает полый перфорированный ротор с насадкой из керамических шаров, а бункер-накопитель рукавного фильтра соединен с выходным газоходом реактора сухой сорбции средством транспортировки сорбента для его рециркуляции.

Кроме того, указанный скруббер может быть выполнен с входом для подачи атмосферного воздуха.

Кроме того, рукавный фильтр может быть снабжен устройством обратной очистки сжатым воздухом.

Технический результат, достигаемый предлагаемым изобретением, заключается в исключении необходимости создания виброкипящего слоя сорбента, что обеспечивает практическое отсутствие требований по гранулометрическому составу химического реагента, снижение абразивной нагрузки за счет низкой скорости дымовых газов с твердыми частицами в системе газоочистки, отсутствие энергетических затрат за создание виброкипящего слоя и рециркуляцию реагента, механическое измельчение крупных кусков реагента в рабочей зоне реактора сухой сорбции. Кроме того, возврат сорбента в рабочую зону реактора сухой сорбции способствует увеличению площади контакта сорбента и дымовых газов, что является необходимым условием для быстрого и полного прохождения гетерогенных реакций нейтрализации.

Предложенная установка позволяет осуществить физико-химическую реагентную очистку дымовых газов от кислых компонентов, а именно: HCl, HF, SO2(H2SO3), SO3(H2SO4), NO, NO2, которая заключается в их адсорбции на твердом сорбенте с последующей хемосорбцией, т.е. химическим превращением этих компонентов в соответствующие сухие соли на поверхности сорбента в объеме газоочистного оборудования.

Принципиальная схема предлагаемой установки очистки дымовых газов представлена на чертеже.

Предлагаемая установка очистки дымовых газов от кислых компонентов содержит полый форсуночный скруббер 1, снабженного узлом 2 для ввода очищаемых дымовых газов, узлом 3 регулируемой подачи атмосферного воздуха и механической тонкодисперной форсункой или форсунками 5 для подачи технической воды с целью охлаждения и увлажнения дымовых газов перед очисткой. С выходом указанного скруббера 1 соединен реактор 6 сухой сорбции с вращающимся полым перфорированным ротором 7 (барабаном), заполненным сферической насадкой в виде керамических шаров 8 и с узлом 4 загрузки сухого сорбента. С выходом реактора 6 соединен газоход 9 отвода запыленных дымовых газов 9 в рукавный фильтр 10, снабженный высокотемпературными тканевыми рукавами 11 и сборной полостью 14 очищенного воздуха. Для обеспечения работоспособности, рукавный фильтр 10 снабжен устройством 12 обратной импульсной очистки сжатым воздухом поверхности фильтрующих элементов 11. Между бункером-накопителем 16 рукавного фильтра 10 и реактором 6 сухой сорбции расположен шнековый питатель 13 с регулируемой скоростью вращения с шлюзовым разгрузочным устройством 15, предназначенный для возврата в реакционную зону реактора 6 части сорбента. Дымовая труба на выходе из сборной полости 14 очищенного воздуха рукавного фильтра 10 соединена с вентилятором-дымососом (на чертеже не показан).

Установка очистки дымовых газов, предназначенная для физико-химической очистки дымовых газов от компонентов кислотного характера, работает следующим образом.

В поток дымовых газов с температурой 1100÷1200°C, поступающих на вход полого скруббера 1, двухфазными механическими форсунками 5 распыляется техническая вода с целью снижения температуры дымовых газов перед химической очисткой в реакторе 6 сухой сорбции. Двухфазные механические форсунки 5 обеспечивают мелкодисперсное распыление для быстрого эффективного охлаждения дымовых газов. Количество подаваемой воды рассчитывается с тем условием, чтобы при входе в реактор 6 сухой сорбции их температура не превышала 200÷250°C. С помощью узла 3 в скруббер 1 подается атмосферный воздух. Возможно охлаждение дымовых газов либо водой, либо воздухом, либо их комбинацией в различных пропорциях. Охлажденные дымовые газы поступают в реактор 6 сухой сорбции с предварительно загруженным расчетным количеством сорбента. В качестве химического сорбента применяется сухая гашеная известь - гидроксид кальция (Са(ОН)2). При первичной загрузке, как правило, задается избыточное количество сорбента с целью создания максимальной площади поверхности гетерогенной реакции нейтрализации между кислыми компонентами дымовых газов и частицами извести. Поток обрабатываемых дымовых газов проходит через вращающийся перфорированный ротор 7 реактора с насадкой в виде керамических шаров 8 и захватывает частички извести, на поверхности которых и происходит реакция нейтрализации. Сорбент постоянно перемалывается в роторе 7 реактора 6 мелящими керамическими шарами 8 с целью вовлечения в реакцию свежих непрореагировавших слоев извести. Кроме того, перемалывающие шары 8 необходимы для размалывания крупных кусков сорбента до размеров частиц, выносимых потоком дымовых газов в рукавный фильтр 10. На выходном газоходе 9 реактора 6 сухой сорбции дымовые газы повторно обрабатываются сорбентом, поступающим в рецикле из бункера-накопителя 16 рукавного фильтра 10. Для осуществления рецикла сорбента применяется шнековый транспортер 13 с регулируемой скоростью вращения. Возврат сорбента в рабочую зону реактора 6 сухой сорбции создает местное локальное перезапыление реагентом потока дымовых газов, тем самым увеличивается площадь контакта сорбента и дымовых газов, что является необходимым условием для быстрого и полного прохождения гетерогенных реакций нейтрализации. Таким образом, мелкие частицы сорбента и продукты нейтрализации (в основном сульфаты, сульфиты и хлориды кальция) выносятся в рукавный фильтр 10 дымовыми газами, а крупные частица и куски сорбента и продуктов газоочистки остаются в перфорированном роторе 7 реактора 6, где перемалываются керамическими шарами 8 до размеров, гарантирующих их летучесть. Механическая очистка дымовых газов от твердых летучих компонентов происходит на тканевых высокотемпературных фильтрующих элементах 11 рукавного фильтра 10. Очищенные дымовые газы собираются в сборной полости 14 рукавного фильтра 10, откуда вентилятором-дымососом через дымовую трубу выбрасываются в атмосферу. По мере накопления сорбента и продуктов газоочистки на внешнем слое тканевых рукавов 11 их аэродинамическое сопротивление возрастает, и по сигналу датчика перепада давления автоматически производится регенерация фильтрующей поверхности путем импульсной подачи воздуха устройством 12. Сухие продукты фильтрация попадают в бункер-накопитель 16 рукавного фильтра 10, откуда шнековым питателем 13 рециркуляции возвращаются в реактор 6 сухой сорбции, осуществляя многократный рецикл сорбента. Периодически (1 раз/час) часть сорбента и солей газоочистки выгружается из шнекового питателя 13 рециркуляции сорбента, а в реактор 6 задается новая порция свежего сорбента.

Предлагаемая установка очистки дымовых газов снабжена приборами контроля и регулирования, не являющимися предметом защиты.

Предлагаемая установка очистки дымовых газов на базе реактора 6 сухой сорбции обеспечивает высокую эффективность нейтрализации кислотных компонентов дымовых газов (не менее 97%) и может быть выполнена в линейке типоразмеров под любое количество образующихся дымовых газов.

Похожие патенты RU2687410C1

название год авторы номер документа
Установка сухой очистки дымовых газов от кислых компонентов 2018
  • Безруков Вячеслав Аркадьевич
  • Гранберг Михаил Владимирович
RU2813243C1
УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ОТХОДОВ 2017
  • Чернин Сергей Яковлевич
RU2666559C1
Дымовой фильтр с теплообменником-сажеуловителем и самоочищающимся бэкфиллинговым блоком 2019
  • Синяпкин Дмитрий Юрьевич
RU2787927C2
УСТАНОВКА СУХОЙ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ 2006
  • Веселков Вячеслав Васильевич
  • Высотский Дмитрий Владимирович
  • Высотский Владимир Дмитриевич
RU2339743C2
Устройство для термического обезвреживания опасных отходов 2015
  • Чернин Сергей Яковлевич
RU2629721C2
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ В ЭЛЕКТРОЛИЗЕРАХ, ОСНАЩЕННЫХ СИСТЕМОЙ АВТОМАТИЧЕСКОЙ ПОДАЧИ СЫРЬЕВЫХ СЫПУЧИХ МАТЕРИАЛОВ 2012
  • Григорьев Вячеслав Георгиевич
  • Тепикин Сергей Викторович
  • Ермаков Александр Викторович
  • Высотский Дмитрий Владимирович
  • Жердев Алексей Сергеевич
  • Казанцев Максим Евгеньевич
RU2494175C2
Устройство комплексной очистки дымовых газов и загрязненного воздуха 2021
  • Чернин Сергей Яковлевич
RU2752481C1
Установка для термической деструкции преимущественно твердых коммунальных отходов с получением углеродистого остатка 2020
  • Ясинский Олег Григорьевич
  • Гунич Сергей Васильевич
  • Еремин Александр Ярославович
  • Мищихин Валерий Геннадьевич
  • Шапошников Виктор Яковлевич
RU2747898C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ 2020
  • Кузнецов Денис Алексеевич
  • Архипов Михаил Владимирович
  • Евгенов Александр Владимирович
  • Петроченко Виктор Викторович
  • Петрова Валерия Игоревна
  • Сантос Куннихан Марио Рохелио
RU2746006C1
ВВОД СУХОГО СОРБЕНТА В УСЛОВИЯХ УСТАНОВИВШЕГОСЯ РЕЖИМА В СКРУББЕР СУХОЙ ОЧИСТКИ 2012
  • Джанкура Брайан Дж.
  • Сильва Энтони А.
  • Кампобенедетто Эдвард Дж.
RU2578685C2

Иллюстрации к изобретению RU 2 687 410 C1

Реферат патента 2019 года Установка сухой очистки дымовых газов от кислых компонентов

Изобретение относится к области переработки промышленных и бытовых отходов и может использоваться для сухой очистки дымовых газов от кислых компонентов методов хемосорбции в процессах термического обезвреживания промышленных и бытовых отходов. Установка очистки дымовых газов от кислых компонентов содержит последовательно соединенные полый форсуночный скруббер с входом для атмосферного воздуха, реактор сухой сорбции и рукавный фильтр. Реактор сухой сорбции включает полый перфорированный ротор с насадкой из керамических шаров. Кроме того, бункер-накопитель рукавного фильтра соединен с выходным газоходом реактора сухой сорбции средством транспортировки сорбента - шнековым питателем для его рециркуляции. Рукавный фильтр снабжен устройством обратной очистки сжатым воздухом. Изобретение позволяет исключить необходимость создания виброкипящего слоя сорбента, что обеспечивает практическое отсутствие требований по гранулометрическому составу химического реагента, снизить абразивную нагрузку за счет низкой скорости дымовых газов с твердыми частицами в системе газоочистки, исключить энергетические затраты на создание виброкипящего слоя и рециркуляцию реагента, механическое измельчение крупных кусков реагента в рабочей зоне реактора сухой сорбции. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 687 410 C1

1. Установка очистки дымовых газов от кислых компонентов, содержащая последовательно соединенные полый форсуночный скруббер, реактор сухой сорбции и рукавный фильтр, при этом реактор сухой сорбции включает полый перфорированный ротор, заполненный насадкой в виде шаров, а бункер-накопитель рукавного фильтра соединен с выходным газоходом реактора сухой сорбции средством транспортировки сорбента.

2. Установка по п. 1, в которой указанный скруббер выполнен с входом для подачи атмосферного воздуха.

3. Установка по п. 1, в которой рукавный фильтр снабжен устройством обратной очистки сжатым воздухом.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687410C1

УСТАНОВКА СУХОЙ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ 2006
  • Веселков Вячеслав Васильевич
  • Высотский Дмитрий Владимирович
  • Высотский Владимир Дмитриевич
RU2339743C2
0
SU155955A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
СПОСОБ ОЧИСТКИ ОТРАБОТАВШИХ ПРОМЫШЛЕННЫХ ГАЗОВ ОТ ТВЕРДЫХ ЧАСТИЦ ДЛЯ ПОДГОТОВКИ ИХ К ИСПОЛЬЗОВАНИЮ В ЗАМКНУТОМ ЦИКЛЕ, УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И ФИЛЬТРУЮЩЕЕ УСТРОЙСТВО, ИСПОЛЬЗУЕМОЕ В УСТАНОВКЕ 2008
  • Калуцкий Федор Егорович
  • Давыдов Сергей Владимирович
  • Калинин Олег Юрьевич
RU2363521C1
ФИЛЬТР РУКАВНЫЙ ДЛЯ ТРЕХСТУПЕНЧАТОЙ ОЧИСТКИ ВОЗДУХА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ 2011
  • Воскресенский Владимир Евгеньевич
  • Онегин Владимир Иванович
  • Гримитлин Александр Михайлович
RU2465948C2
Установка для фиксации фтора 1972
  • Вольф Мюльрад
SU673147A3
СПОСОБ СЕЛЕКТИВНОЙ ОЧИСТКИ ПИРОГАЗА ОТ СЕРОВОДОРОДА И ДВУОКИСИ УГЛЕРОДА 2012
  • Черкесов Аркадий Юльевич
  • Игнатенко Сергей Иванович
  • Фесенко Лев Николаевич
RU2515300C1
US 4369130 A1, 18.01.1983
GB 1354769 A, 30.05.1974
JP 4016209 A, 21.01.1992
Устройство для защиты контактной сети от перегрева 1973
  • Павлов Игорь Валентинович
SU575245A1

RU 2 687 410 C1

Авторы

Чернин Сергей Яковлевич

Даты

2019-05-13Публикация

2018-06-25Подача