Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне Российский патент 2019 года по МПК G01N21/3577 

Описание патента на изобретение RU2688954C2

[0001] Настоящее изобретение относится к системе и способу количественного определения компонентов текучего неоднородного вещества с помощью спектрального анализа в среднем инфракрасном диапазоне (определяемом здесь как использующий длины волн из спектральной области от 2,5 мкм до 10 мкм), в частности к определению композиционных параметров жидкости, в которой взвешены частицы, в особенности молока, содержащего жир.

[0002] Известно определение компонентов образца, например, одного или нескольких из следующего: жир, лактоза, глюкоза, белок, мочевина и/или нежелательные примеси в жиросодержащих жидких образцах, в частности в образцах крови, молока или молочных продуктов, или, например, одного или нескольких из следующего: белок, влага и/или крахмал в зернах хлебных злаков, при помощи методик затухания в среднем инфракрасном диапазоне. Согласно таким методикам образец исследуют путем пропускания через образец излучения в среднем инфракрасном спектральном диапазоне. Затем измеряют затухание излучения, по которому проводят исследование, в среднем инфракрасном диапазоне, вызываемое образцом.

[0003] Системы или инструменты для измерения содержат средства измерения затухания в среднем инфракрасном диапазоне для измерения затухания в инфракрасной области образца в некотором количестве диапазонов волн, чаще всего по непрерывному спектральному диапазону, и средства вычисления, которые приспособлены вычислять концентрации интересующих компонентов в образце, исходя из измеренных в среднем инфракрасном диапазоне значений затухания образца. Вычисления выполняют с использованием эталонной или прогнозирующей модели, которая устанавливает зависимость между интересующим компонентом и измеренными значениями затухания в среднем инфракрасном диапазоне.

[0004] Одна проблема, связанная с таким измерением в среднем инфракрасном диапазоне, например, образцов молока, заключается в том, что вычисленные результаты (часто называемые косвенными или прогнозируемыми результатами, поскольку непосредственными результатами анализа являются результаты, полученные с применением стандартных химических способов сравнения) варьируются при варьирующемся распределении частиц по размерам, здесь жировых шариков, в образцах.

[0005] Это может быть продемонстрировано теоретически, как будет описываться далее. Допустим, что кювета диаметром 8 мм заполняют сырым молоком, содержащим 4% жира. Типичная толщина светопоглощающего слоя в образце составляет 0,05 мм для излучения в среднем инфракрасном диапазоне. Полезный (т.е. облученный) объем кюветы можно предположить равным 2,5 мм3. Содержание жира составляет 4% по весу, а густота молока, как правило, составляет 0,93 г/мл, что при объеме жира, присутствующего в кювете, дает около 0,12 мм3.

[0006] Жировые шарики в неоднородном (негомогенизированном) виде составляют порядка 4 мкм - 10 мкм в диаметре. Если предположить, что их распределение по размерам следует распределению Пуассона, то теоретическое определение воспроизводимости жира в кювете можно вычислить, как показано в Таблице 1, где последняя строка представляет воспроизводимость жира в кювете, заполненной не гомогенизированным молоком, вычисленную для различных размеров жировых шариков.

[0007] Как и следовало ожидать, воспроизводимость ухудшается с увеличением диаметра жирового шарика. Однако эти результаты гораздо лучше, чем тем, которые характерны для негомогенизированного молока, находящегося в неподвижном состоянии в кювете, где, как правило, получают абсолютные воспроизводимости до 0,1.

[0008] Для того чтобы свести к минимуму эту проблему известные инструменты или системы, применяемые для измерений, приспособлены измерять в своих измерительных отделениях гомогенизированные образцы и содержат встроенные гомогенизаторы, которые должны обеспечивать то, чтобы различные образцы, подвергаемые измерению, подвергались одинаковой гомогенизации, так чтобы у них было одинаковое распределение частиц по размерам. Экспериментальным путем легко продемонстрировать, что воспроизводимости, наблюдаемые для гомогенизированного молока, находящегося в неподвижном состоянии в кювете, очень близки к теоретическим значениям, представленным выше. В молоке, например, гомогенизаторы должны действовать так, чтобы обеспечивать размеры частиц от 0,2 мкм до 2 мкм. Однако гомогенизаторы систем инструментов подвержены механическому изнашиванию, что означает, что их гомогенизирующая эффективность со временем ухудшается, приводя тем самым к варьированию в распределении по размерам жировых шариков, и таким образом снижая точность измерений.

[0009] Одно решение, позволяющее избежать потребности в гомогенизаторах, предоставлено в документе WO 92/17767. Здесь раскрывается, что измерения затухания в среднем инфракрасном диапазоне должны быть выполнены на неоднородных (негомогенизированных) образцах молока, находящихся в неподвижном состоянии в кювете, в среднем инфракрасном диапазоне спектральной области от 1160 см-1 (8,62 мкм) и до 1350 см-1 (7,41 мкм). Это представляет область, в которой С-О-связь поглощает энергию, и на которую, как было установлено, не влияет рассеяние от частиц жира.

[0010] В документе WO 2008/146276 описана система, которая приспособлена выполнять измерения затухания в текучем неоднородном молоке в ближней инфракрасной области спектра и собирать данные измерений как от света, отраженного текучим молоком, так и от света, проходящего сквозь него. Однако другие компоненты, например вода, оказывают очень сильное влияние на затухание в этой ближней инфракрасной области.

[0011] Согласно одному аспекту настоящего изобретения предоставлен способ определения компонентов текучего неоднородного образца, включающий получение образца вещества; протекание образца через область измерения, что может быть обеспечено потоком через кювету; одновременное взаимодействие текучего образца в области измерения с излучением в среднем инфракрасном диапазоне; последующее измерение значений затухания в среднем инфракрасном диапазоне при одном или нескольких диапазонах волн, как правило, по спектрофотометрическому анализу взаимодействующего излучения, по меньшей мере, в области с длиной волны, в которой интересующий компонент влияет на затухание в среднем инфракрасном диапазоне, и вычисление в средстве вычисления показателя интересующего компонента в образце по измеренным в среднем инфракрасном диапазоне значениям затухания.

[0012] Путем выполнения измерений на текучем образце может быть удобно выполнено эффективное усреднение измерения, и тем самым может быть достигнута повышенная точность. Измерения повторяют много раз, пока образец протекает через область измерения со скоростью потока, выбранной так, чтобы, по меньшей мере, часть образца в области измерения заменялась новым образцом во время выполнения ряда измерений, предпочтительно на каждом измерении. Наиболее предпочтительно скорость потока выбирают так, чтобы весь образец в области измерения заменялась на каждом измерении.

[0013] Среди специалистов в области техники считается общепринятым, что в отличие от измерений в ближней инфракрасной области измерений в среднем инфракрасном диапазоне на текучем образце следует избегать, поскольку ожидается низкая точность и воспроизводимость, как будет объяснено ниже.

[0014] Частица во взвеси или мицелла в эмульсии, как правило, содержит иные химические связи, чем окружающая жидкость, и каждый вибрационный резонанс этих связей вызывает определенное затухание, которое, например, может быть показательным в качестве определенной частоты в интерферограмме, записанной средством измерения затухания интерферометрического типа. Если во время измерения частица или мицелла находится в фиксированном положении в кювете, соответствующая частота и амплитуда будет постоянной по всей необработанной интерферограмме.

[0015] Как правило, интерферограмму умножают на колоколообразную функцию аподизации, чтобы сгладить неоднородности вначале и в конце сканирования. Таким образом, если частица или мицелла движется через кювету во время сканирования, полученная в результате интерферограмма будет нарушена. Если частица проходит вначале или в конце сканирования, соответствующая амплитуда в интерферограмме будет сокращена ввиду аподизации. Следовательно, после преобразования Фурье аподизированной интерферограммы частица, которая проходит вначале или в конце сканирования, будет иметь меньший пик поглощения, чем частица, которая проходит в середине сканирования.

[0016] Если во время измерения частица или мицелла движется по кювете очень быстро, записывается лишь ограниченное количество колебаний, и частота затухания (волновое число) в среднем инфракрасном диапазоне плохо определяется. Это ведет к значительному размыванию пика поглощения после преобразования Фурье, которое также ограничивает точность измерения.

[0017] Естественно, при большом количестве малых частиц или мицелл в текучей жидкости записываемые интерферограммы будут представлять среднее значение и будут относительно не нарушены течением. Однако при среднем количестве частиц, которые являются более крупными по сравнению с объемом облученной кюветы, например жировых шариков в негомогенизированном молоке, описанные выше эффекты скорости потока будут влиять на записываемую интерферограмму и устанавливать ограничение повторяемости измерений.

[0018] Описанный здесь эффект сильнее в средней инфракрасной части спектра при спектроскопии с использованием преобразования Фурье, чем в ближней инфракрасной части спектра (как правило, к ней относят длины волн от 0,8 мкм до 2,5 мкм). Во-первых, поскольку поглощение гораздо сильнее в среднем инфракрасном диапазоне, чем в ближнем инфракрасном диапазоне, в среднем инфракрасном диапазоне измеряют значительно меньший объем образца, что делает статистические изменения в количестве частиц или мицелл относительно большими. Во-вторых, поскольку измерения текучих образцов в ближней инфракрасной области обычно выполняют со спектрометрами DDA (диодно-матричный детектор), со временем DDA будет одинаково усреднять все спектральные компоненты (длины волн), устраняя проблему скорости потока, описанную выше в отношении среднего инфракрасного диапазона.

[0019] В одном варианте осуществления применительно к измерению жиросодержащего жидкого образца, такого как молоко или кровь, способ может дополнительно включать этап нагревания образца перед исследованием излучением в среднем инфракрасном диапазоне. Это снижает тенденцию взвешенных частиц жира агломерировать.

[0020] Согласно второму аспекту настоящего изобретения предоставлена система измерения затухания в среднем инфракрасном диапазоне для количественного определения показателя интересующего компонента в неоднородном текучем образце, причем система содержит проточную трубку для введения в образец неоднородного текучего вещества; средство переноса, соединенное с проточной трубкой для того, чтобы вызывать протекание в нее образца; средство измерения затухания в среднем инфракрасном диапазоне, приспособленное подавать излучение в среднем инфракрасном диапазоне в образец, когда он протекает, и генерировать сигнал, характерный для изменения интенсивности в среднем инфракрасном диапазоне подаваемого излучения в среднем инфракрасном диапазоне после его прохождения через текучий образец, и средство вычисления, подсоединенное для того, чтобы получать сигнал, генерируемый средством измерения, и чтобы вычислять показатель одного или нескольких интересующих компонентов в зависимости от полученного сигнала и от прогнозирующей модели, например обеспечиваемой эталоном или искусственной нейронной сетью, которая устанавливает математическую зависимость между значениями затухания в среднем инфракрасном диапазоне текучего неоднородного вещества и интересующим компонентом.

[0021] Далее будет описан иллюстративный вариант осуществления настоящего изобретения со ссылкой на графические материалы где:

[0022] фиг. 1 иллюстрирует структурную схему иллюстративной системы, способной осуществлять способ согласно настоящему изобретению.

[0023] Система 2 измерения затухания в среднем инфракрасном диапазоне для количественного определения показателя интересующего компонента в неоднородном жидком образце показана на фиг. 1. Система 2 содержит проточную трубку 4, содержащую первый конец 6 для введения в неоднородный жидкий образец в держателе 8 образца и содержащую второй конец 10 для вывода образца из системы 2, подсоединяемый здесь к стоку. Система 2 также содержит средство 10 переноса, в данном примере в форме насоса, которое соединено с проточной трубкой 8 и способно вызывать поток через трубку 4. Средство 14 измерения затухания в среднем инфракрасном диапазоне выполнено как часть системы 2 для измерения затухания излучения в среднем инфракрасном диапазоне, которая взаимодействует с образцом, когда он протекает через область измерения, границы которой здесь определены потоком через кювету 16, которая находится в жидкостном соединении с образцом, протекающим через трубку 4.

[0024] Пригодным средством 14 измерения затухания в среднем инфракрасном диапазоне является интерферометр известного типа, например интерферометр Майкельсона. Это интерферометрическое средство 14 измерения расположено совместно по отношению к области измерения 16, определенной здесь потоком через кювету, так чтобы иметь возможность выявлять излучение в среднем инфракрасном диапазоне после прохождения через образец. При использовании интерферограмма, выполненная интерферометром, обрабатывается с использованием преобразования Фурье для того, чтобы генерировать зависимое от длины волны изменение интенсивности, представляющее затухание образцом излучения в среднем инфракрасном диапазоне.

[0025] В целом, областью измерения 16 может быть любая область, в которой при использовании предусмотрено, что текучий образец исследуют излучением в среднем инфракрасном диапазоне. Таким образом, по меньшей мере, часть измеряемого образца заменяется во время любого периода измерения. Затем это обеспечивает эффективное усредненное измерение, которое повышает точность и повторяемость результатов измерения.

[0026] Средство 18 вычисления, например, содержащее встроенный микропроцессор или автономный персональный компьютер, или распределенную систему, содержащую по меньшей мере один компонент в месте, удаленном от системы 2, и функционально подключенное телекоммуникационной сетью, подсоединено для получения сигнала, характерного для измеренного в среднем инфракрасном диапазоне затухания, такой как интерферограмма или интерферограмма, подвергнутая преобразованию Фурье, и выполнено так, чтобы вычислять известным образом показатель, такой как определенная концентрация, интересующего компонента в образце с применением эталонной или другой прогнозирующей модели (например, искусственных нейронных сетей), которая устанавливает математическую зависимость между значениями затухания в среднем инфракрасном диапазоне и интересующим компонентом.

[0027] Нагревательный блок 20 может быть включен в определенные варианты осуществления для отдельных измерительных приложений для нагревания образца перед тем, как он будет протекать через измерительную кювету 16. Нагревательный блок может, например, содержать электрическую резистивную спираль вокруг трубки 4.

[0028] В отдельной системе 2 для измерения образцов неоднородного (негомогенизированного) молока или молочного продукта наиболее полезно введен нагреватель для нагрева образца молока до примерно 41°С. Это снижает тенденцию частиц жира в молоке агломерировать. Нагревание может также выгодно применяться при измерении других жиросодержащих жидкостей, таких как кровь.

[0029] Результаты определений типичных интересующих компонентов, представленных здесь в виде процентного содержания жира, белка, лактозы, суммарного количества твердых веществ (TS) и количества твердых веществ, не содержащих жир (SNF), в образцах молока приведены в Таблице 2 вместе с абсолютными и относительными показателями точности А(абс) и А(отн), а также абсолютной и относительной повторяемостью R(абс) и R(отн) этих определений.

[0030] Эти определения были выполнены согласно способу настоящего изобретения с применением системы, описанной согласно фиг. 1.

[0031] Использовали пятнадцать образцов молока, и были выполнены измерения в трех повторностях для каждого образца, причем каждая повторность представляла собой среднее значение сорока сканирований в области одной и той же длины волны. Чтобы иметь возможность составить эталонную модель, некоторые образцы содержали белок, жир и/или лактозу, намеренно добавленные в известных количествах. Столбец «Низкое содержание» представляет наименьшее количество соответствующего компонента в образце, «Высокое содержание» - наибольшее количество, и «Среднее содержание» - среднее значение для всех образцов. Затем, в качестве примера, была известным образом составлена только эталонная модель частичных наименьших квадратов (PLS), использующая максимум шесть факторов, для применения в последующих прогнозах.

[0032] Каждый образец был исследован путем излучения в среднем инфракрасном диапазоне, и полученные в результате интерферограммы передач обработаны преобразованием Фурье до так называемого «однолучевого» спектра (т.е. спектра с зависимой от интенсивности длиной волны (или частотой) без поправок на внешние артефакты, такие как те, которые вызываются источником: кюветой или детектором). Коэффициент пропускания был вычислен относительно воды, чтобы удалить те артефакты, которые не связаны с взаимодействием с образцом.

[0033] Образцы нагревали до 41°С и проведены через кювету 16 со скоростью потока 1 мл в минуту.

[0034] Как можно видеть, абсолютная точность А(абс) для всех компонентов составляет приблизительно 0,04, а абсолютная повторяемость R(a6c) составляет примерно 0,01. Это удивительно, учитывая, что теоретически, как обсуждалось выше, ожидается, что измерения в среднем инфракрасном диапазоне на текучем образце будут даже хуже, чем те, что выполнены на образце, находящемся в состоянии покоя в кювете.

Похожие патенты RU2688954C2

название год авторы номер документа
СПЕКТРАЛЬНЫЙ АНАЛИЗ ТЕКУЧЕГО НЕОДНОРОДНОГО ВЕЩЕСТВА В СРЕДНЕМ ИНФРАКРАСНОМ ДИАПАЗОНЕ 2010
  • Йухль Хенрик
RU2564382C2
СПОСОБ И СПЕКТРОМЕТР ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ КОМПОНЕНТА В ОБРАЗЦЕ 2003
  • Риддер Карстен
RU2316755C2
СПЕКТРОМЕТРИЧЕСКИЙ ЭКСПРЕСС-АНАЛИЗАТОР ПОКАЗАТЕЛЕЙ КАЧЕСТВА МОЛОКА И МОЛОЧНОГО НАПИТКА 2009
  • Калинин Андрей Валентинович
RU2410671C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЖИРА И БЕЛКА В МОЛОКЕ И МОЛОЧНЫХ ПРОДУКТАХ 1996
  • Суминов В.М.
  • Гребенюк Е.И.
  • Могильная Т.Ю.
  • Могильный А.Г.
  • Новиков В.В.
  • Таргонский В.В.
  • Макеев В.Н.
RU2110065C1
СПОСОБ КОРРЕКЦИИ ИЗМЕНЕНИЯ АМПЛИТУДЫ В СПЕКТРОМЕТРЕ 2020
  • Хансен, Пер Ваабен
  • Клаусен, Йеппе Сандвик
RU2805385C2
АНАЛИЗАТОР ЖИДКОСТИ 2014
  • Андерсен Ханс Виллемёс
  • Юль Хенрик Вилструп
RU2671289C1
СПОСОБ И СИСТЕМА ДЛЯ ОЦЕНКИ ОБРАЗЦОВ 2005
  • Арнвидарсон Беркур
  • Ларсен Ханс
RU2389983C2
СПОСОБ ГРАДУИРОВКИ СПЕКТРОМЕТРА 2005
  • Юл Хенрик Вилструп
RU2400715C2
Устройство для анализа молока 1982
  • Метельский Юрий Анатольевич
  • Бер Александр Юльевич
  • Веселовская Нина Владимировна
SU1099281A1
Устройство для количественного определения содержания компонентов молока 1982
  • Кремер Александр Абрамович
  • Дьяченко Леонид Андреевич
  • Осиновский Александр Исарович
SU1070472A1

Иллюстрации к изобретению RU 2 688 954 C2

Реферат патента 2019 года Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне

Изобретение относится к области спектрального анализа и касается способа определения компонентов текучего неоднородного образца молока. Способ включает в себя получение образца молока, измерение интерферометром значений затухания образца молока в среднем инфракрасном диапазоне и вычисление в блоке обработки данных показателя интересующего компонента в образце молока по измеренным значениям затухания в среднем инфракрасном диапазоне. При этом способ включает в себя одновременное взаимодействие излучения в среднем инфракрасном диапазоне с текучим образцом молока в области измерения и последующее измерение значений затухания для одного или более диапазонов волн. Этап измерения включает выполнение ряда измерений значений затухания для одного и того же диапазона или для нескольких диапазонов волн. При этом образец молока протекает со скоростью потока, выбранной для обеспечения замены по меньшей мере части образца молока в области измерения для каждого из ряда измерений. Технический результат заключается в повышении точности измерений. 1 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 688 954 C2

1. Способ определения компонентов текучего неоднородного образца молока, включающий: получение образца молока; измерение интерферометром значений затухания образца молока в среднем инфракрасном диапазоне и вычисление в блоке обработки данных показателя интересующего компонента в образце молока по измеренным значениям затухания в среднем инфракрасном диапазоне, при этом

способ дополнительно включает протекание образца молока; одновременное взаимодействие излучения в среднем инфракрасном диапазоне с текучим образцом молока в области измерения и последующее измерение значений затухания в среднем инфракрасном диапазоне для одного или более диапазонов волн взаимодействующего излучения, проходящего через образец молока; при этом

этап измерения значений затухания для одного или более диапазонов волн включает выполнение ряда измерений значений затухания для одного и того же диапазона или для упомянутых диапазонов волн, при этом образец молока протекает со скоростью потока, выбранной для обеспечения замены по меньшей мере части образца молока в области измерения для каждого из ряда измерений.

2. Способ по п. 1, отличающийся тем, что способ включает этап нагревания образца молока перед измерением.

Документы, цитированные в отчете о поиске Патент 2019 года RU2688954C2

Устройство для количественного определения содержания компонентов молока 1985
  • Корниенко Михаил Гаврилович
  • Кузьмин Эдуард Викторович
SU1280542A1
US 6297505 B1, 02.10.2001
DE 10352924A1, 14.07.2005
US 2004135088 A1, 15.07.2004.

RU 2 688 954 C2

Авторы

Йухль Хенрик

Даты

2019-05-23Публикация

2015-06-01Подача