ДАТЧИК КИСЛОРОДА, СОДЕРЖАЩИЙ ОПТИЧЕСКОЕ ВОЛОКНО БОЛЬШОГО ДИАМЕТРА С ПОКРЫТЫМ НАКОНЕЧНИКОМ Российский патент 2019 года по МПК G01N21/77 

Описание патента на изобретение RU2689286C2

Настоящее изобретение относится к датчику кислорода и более конкретно к датчику кислорода для использования в авиационных применениях, и более конкретно в применениях, относящихся к топливным бакам или модулям отделения воздуха.

Настоящее изобретение обеспечивает совершенствование измерения концентрации кислорода. Данное изобретение будет особенно полезно в измерении концентрации кислорода в незаполненном объеме топливного бака летательного аппарата или в модулях отделения воздуха.

Известно использование гашения флуоресценции для индикации наличия некоторых соединений, представляющих интерес. Флуоресцентный материал излучает свет c определенной длиной волны и интенсивностью, который имеет определенное время жизни излучения, после возбуждения определенной длиной волны, которая меньше, чем излучаемая длина волны. Интенсивность и время жизни излучения зависят от концентрации кислорода, контактирующего с флуоресцентным материалом. Когда концентрация кислорода увеличивается, интенсивность и время жизни флуоресцентного излучения уменьшаются, и эти увеличение и уменьшение прямо пропорциональны друг другу.

Датчики, используемые внутри топливных баков, содержат поверхность флуоресцентного материала, которая подвергается воздействию среды топливного бака. Уменьшение интенсивности и времени жизни излучения флуоресцентного материала при наличии кислорода обеспечивает прямое измерение концентрации кислорода около поверхности датчика. Флуоресцентное излучение материала, который возбужден электромагнитным способом, уменьшается прямо пропорционально концентрации соединений, представляющих интерес. Материалы, такие как платина-тетракис-пентафторфенил-порфирин и платина-октаэтилпорфирин, используются в качестве материалов, чувствительных к газообразному кислороду. Однако среда топливного бака является агрессивной и может вызывать деградацию флуоресцентного материала. Эта деградация материала приводит к уменьшению интенсивности и изменениям времени жизни флуоресцентного излучения, и это может быть неверно интерпретировано как более высокий уровень кислорода.

Процесс флуоресцентного излучения может быть обобщен следующим образом:

Возбуждение: L+ 1=L* (уравнение 1)

Флуоресценция: L*= L+2 (уравнение 2)

Гашение: L*+O2=L+O2* (уравнение 3)

Уравнение 1 отображает процесс электромагнитного возбуждения флуорофора фотоном с энергией hν1. Уравнение 2 отображает излучение фотона с энергией 2, в тех случаях, когда возбужденный флуорофор L* возвращается в невозбужденное состояние L и, причем, 2 < 1. При наличии кислорода, флуорофор передает энергию молекуле кислорода при столкновении, как это показано посредством уравнения 3. Эта передача энергии не испускает фотон в процессе, который определяют как гашение. Гашение возбужденного флуорофора молекулой кислорода приводит к уменьшению общей интенсивности и времени жизни излучения. Именно этот механизм, который обеспечил возможность разработки оптического датчика кислорода. Датчики нашли конкретное применение в авиакосмических топливных баках, но было обнаружено, что, когда датчик подвергается воздействию жидкого топлива, чувствительный к кислороду материал деградирует. Также, когда флуоресцентный материал подвергается воздействию топлива в баке, флуорофор может экранироваться молекулами углеводородов в топливе. Это взаимодействие может приводить к фото-обесцвечиванию, которое может приводить к необратимой деградации флуорофора. Если флуорофор и кислород не взаимодействуют, то тогда общая интенсивность и время жизни излучения увеличиваются. Это увеличение может быть неверно интерпретировано в качестве пониженной концентрации кислорода. Также будет необходимо калибровать или сравнивать с эталоном излучение от чувствительного к кислороду флуорофора.

Настоящее изобретение направлено на преодоление проблем уровня техники посредством обеспечения датчика кислорода, включающего в себя чувствительный к кислороду флуоресцентный материал, включающий в себя сочетание: чувствительного к кислороду красителя и нечувствительного к кислороду красителя, причем оба красителя являются флуорофорами. Нечувствительный к кислороду краситель может быть кремний-октаэтилпорфирином. Чувствительный к кислороду краситель может быть платина-тетракис-пентафторфенилпорфирином или платина-октаэтилпорфирином. Эти два красителя могут быть диспергированы в полимерной матрице, например, полидиметилсилоксановой матрице. В качестве альтернативы, материал может быть изготовлен с использованием золь-гель-ксерогель процесса. С использованием этой технологии, становится возможным диспергировать материал в стойкой к топливу и проницаемой для кислорода фторосиликоновой резине.

Чувствительный к кислороду краситель и нечувствительный к кислороду краситель могут быть возбуждены одной и той же длиной волны. Каждый из этих красителей, в сравнении с другим красителем, излучает отличную длину волны, интенсивность, и его излучение имеет отличное время жизни. После взаимодействия с молекулами кислорода, интенсивность и время жизни излучения уменьшаются для чувствительного к кислороду красителя, в то время как интенсивность и время жизни излучения нечувствительного к кислороду красителя остаются неизменными.

Датчик имеет наконечник, содержащий сочетание нечувствительного к кислороду красителя и чувствительного к кислороду красителя. Наконечник находится на конце волокна большого оптического диаметра. Другой конец волокна большого оптического диаметра выполнен с возможностью соединения с призмой или датчиками для разделения длин волн. Волокно большого диаметра размещено в трубке, предпочтительно, изготовленной из стали. Один конец трубки имеет резиновую мембрану и один или более вентиляционных клапанов, которые предотвращают взаимодействие жидкого топлива с флуорофорами, но которые допускают взаимодействие между флуорофорами и кислородом. Мембрана может быть изготовлена из любого подходящего материала, стойкого к авиакосмическим топливам и проницаемого для газообразного кислорода, например, фторосиликоновой резины, полидиметилсилоксана.

Устройство для передачи возбуждающего света и для приема излучения от чувствительного к кислороду флуоресцентного материала включает в себя оптическое волокно. Это волокно имеет, предпочтительно, большой диаметр. Устройство дополнительно включает в себя трихроичную призму и два фотодетектора или трехцветные датчики, такие как интегральные RGB-датчики. Трихроичная призма и два фотодетектора или трехцветные датчики, такие как интегральные RGB-датчики, разделяют три длины волны; длину волны возбуждения и длины волн излучения от каждого красителя. Интенсивность и время жизни преобразуются в пропорциональные токи. Управляемые током усилители напряжения используются для преобразования тока в напряжение (V1), которое пропорционально интенсивности или времени жизни излучения от нечувствительного к кислороду красителя, и напряжение (V2), которое пропорционально интенсивности или времени жизни излучения от чувствительного к кислороду красителя. Возбуждение является импульсным для того, чтобы измерять время жизни излучения. Как правило, время жизни флуоресценции находится между 70 и 100 мкс и контролируется в течение известного времени. Время жизни и интенсивность можно измерять совместно.

Во время функционирования датчика, напряжения (V1 и V2) сравнивают друг с другом для заключения о характеристиках чувствительного к кислороду флуоресцентного материала. Когда уровень кислорода увеличивается, V2 уменьшается, а V1 остается неизменным. Если материал деградирует при отсутствии изменений в концентрации кислорода, то тогда V1 и V2 будут уменьшаться вместе. Характеристики материала, концентрация кислорода и чувствительность могут быть откалиброваны посредством отношения V1/V2. Это сравнение напряжений является эффективным при встроенной самопроверке.

Настоящее изобретение описано со ссылкой на сопровождающие чертежи, на которых:

Фиг. 1 показывает зонд датчика, имеющий датчик согласно настоящему изобретению.

Фиг. 2 показывает датчик и средство для разделения длин волн излучения от флуорофоров и излучения возбуждения согласно настоящему изобретению.

Фиг. 3 показывает пример флуоресцентного излучения от двух флуорофоров.

Фиг. 4 показывает окно известного времени, в котором измеряют время жизни излучения.

Фиг 1 показывает зонд 20 датчика, который включает в себя волокно 22 большого диаметра, имеющее волоконный соединитель 24 для соединения волокна с трихроичной призмой или трехцветным датчиком. Волокно 22 большого диаметра имеет наконечник 26 (показанный более подробно в увеличенной области), который оканчивается в чувствительном к кислороду флуоресцентном материале 28, который включает в себя чувствительный к кислороду краситель и нечувствительный к кислороду краситель, причем оба эти красители являются флуорофорами. Волокно 22 большого диаметра размещено внутри трубки 30 для защиты. Трубка имеет вентиляционный клапан 32, соединяемый c ней, который включает в себя мембрану для предотвращения взаимодействия жидкого топлива и наконечника 28 с двумя флуорофорами.

Фиг. 2 показывает упрощенную версию зонда датчика, показанного на фиг. 1. Чувствительный к кислороду флуоресцентный материал 28 расположен на одном конце оптического волокна 22 большого диаметра. На другом конце оптического волокна 22 находится трихроичная призма 40. Фотоны направляются через призму 40 и передаются оптическим волокном 22 для возбуждения флуорофоров в наконечнике 28. Излучение от флуорофоров передается волокном 22 и проходит через трихроичную призму 40 для разделения трех длин волн, состоящих из длины волны возбуждения, длины волны излучения от чувствительного к кислороду красителя 36 и длины волны излучения от нечувствительного к кислороду красителя 38. Два фотодетектора (не показаны) используются для преобразования информации об интенсивности или времени жизни в пропорциональные токи I1 и I2. Затем ток преобразуется в напряжение посредством управляемых током усилителей напряжения.

Фиг. 3 показывает график энергии относительно интенсивности флуоресценции. Можно увидеть, что интенсивность излучения от чувствительного к кислороду красителя уменьшается, а концентрация кислорода увеличивается. Однако, интенсивность излучения от нечувствительного к кислороду красителя остается неизменной при изменении концентрации кислорода.

Фиг. 4 показывает окно 50 измерения известного времени, в котором измеряют время жизни излучения. Общая интегральная интенсивность в окне 50 измерения обеспечивает измерение концентрации кислорода.

Конструкция, аналогичная показанной и описанной конструкции датчика кислорода, может быть использована в применениях, относящихся к топливному баку и модулям отделения воздуха.

Признаки, раскрытые в приведенном выше описании или в нижеследующей формуле изобретения, или на сопровождающих чертежах, выраженные в своих конкретных формах или с точки зрения средства для выполнения раскрытой функции, или способа достижения раскрытого результата, в соответствующих случаях, могут быть использованы для реализации настоящего изобретения в других их формах, отдельно или в любом сочетании таких признаков.

Похожие патенты RU2689286C2

название год авторы номер документа
СИСТЕМА НЕЙТРАЛЬНОГО ГАЗА ДЛЯ ТОПЛИВНОГО БАКА ВОЗДУШНОГО СУДНА, ПРИСПОСОБЛЕННАЯ ДЛЯ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА КИСЛОРОДА, ПРИСУТСТВУЮЩЕГО В НЕЙТРАЛЬНОМ ГАЗЕ, НАГНЕТАЕМОМ В УКАЗАННЫЙ БАК 2016
  • Ренар Брюно
  • Дена Фредерик
RU2661258C2
Бесконтактный способ измерения температуры с помощью флуоресцентных зондов 2023
  • Ходорковский Михаил Алексеевич
  • Мельников Алексей Сергеевич
  • Морозова Наталия Евгеньевна
  • Ведяйкин Алексей Дмитриевич
RU2808699C1
МАТЕРИАЛ, ЧУВСТВИТЕЛЬНЫЙ К ДАВЛЕНИЮ 2003
  • Хамнер Марвин П.
  • Маллигэн Роберт Ф.
RU2335511C2
Устройство для измерения концентрации растворенного кислорода в водных растворах и суспензиях биологических объектов с использованием оптико-волоконного кислородного сенсора 2022
  • Мельников Павел Валентинович
  • Холмухамедов Эхсон Лукманович
  • Зайцев Николай Конкордиевич
RU2786374C1
ИСПОЛЬЗОВАНИЕ БАРЬЕРНОЙ КОНТАКТНОЙ СРЕДЫ ДЛЯ ХЕМО-ХЕМООПТИЧЕСКИХ ДАТЧИКОВ В ЧРЕСКОЖНЫХ ПРИМЕНЕНИЯХ 2014
  • Калман Йозефус Арнольдус Хенрикус Мария
  • Ламберт Николас
  • Ван Кестерен Ханс Виллем
RU2695258C2
СПОСОБ ФОТОПЕРЕКЛЮЧЕНИЯ РЕТИНАЛЬСОДЕРЖАЩЕГО БЕЛКА И ОПТИЧЕСКИЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ НА ЕГО ОСНОВЕ 2009
  • Островский Михаил Аркадьевич
  • Мозговая Мария Николаевна
  • Фельдман Татьяна Борисовна
  • Смитиенко Ольга Александровна
  • Шелаев Иван Викторович
  • Гостев Федор Евгеньевич
  • Надточенко Виктор Андреевич
  • Саркисов Олег Михайлович
  • Кирпичников Михаил Петрович
  • Некрасова Оксана Васильевна
RU2420773C1
СПОСОБ ДЕТЕКЦИИ ЛОКАЛЬНОЙ ТЕМПЕРАТУРЫ В ЖИВЫХ КЛЕТКАХ И ПОСТРОЕНИЯ ТЕМПЕРАТУРНЫХ КАРТ ЖИВЫХ КЛЕТОК 2022
  • Протасова Елена Александровна
  • Максимов Евгений Георгиевич
RU2799016C1
СИСТЕМЫ И СПОСОБЫ КОНТРОЛЯ ИЗЛУЧЕНИЯ 2015
  • Клемен Дж. Марк Дж.
RU2657713C2
СПОСОБ ПРИМЕНЕНИЯ ФИКОБИЛИПРОТЕИНОВ В КАЧЕСТВЕ ОПТИЧЕСКИХ СЕНСОРОВ ЛОКАЛЬНОЙ ТЕМПЕРАТУРЫ В ЖИВЫХ КЛЕТКАХ И ТКАНЯХ 2021
  • Протасова Елена Александровна
  • Максимов Евгений Георгиевич
  • Случанко Николай Николаевич
RU2780954C1
Оптоволоконный сенсор на структурированных пучках оптических волокон 2022
  • Мельников Павел Валентинович
  • Холмухамедов Эхсон Лукманович
  • Зайцев Николай Конкордиевич
RU2786398C1

Иллюстрации к изобретению RU 2 689 286 C2

Реферат патента 2019 года ДАТЧИК КИСЛОРОДА, СОДЕРЖАЩИЙ ОПТИЧЕСКОЕ ВОЛОКНО БОЛЬШОГО ДИАМЕТРА С ПОКРЫТЫМ НАКОНЕЧНИКОМ

Изобретение относится к датчикам кислорода и может использоваться в области авиации для топливных баков и модулей отделения воздуха. Устройство включает в себя чувствительный к кислороду флуоресцентный материал, содержащий чувствительный и не чувствительный к кислороду флуоресцентные красители. Флуоресцентный материал закреплен на конце оптического волокна. На другом конце оптического волокна располагается источник излучения для возбуждения флуорофоров, а также либо трихроичная призма с двумя детекторами, либо трехцветный датчик. Призма или датчик выполнены с возможностью разделения длин волн излучения и возбуждения красителей. В процессе самопроверки устройства сравнивают напряжения, в которые преобразуются излучения, создаваемые чувствительным и нечувствительным красителями. 2 н. и 9 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 689 286 C2

1. Устройство для измерения концентрации кислорода в применении, относящемся к авиационному топливному баку, или в применении, относящемся к авиационному модулю отделения воздуха, причем устройство включает в себя датчик, включающий в себя:

чувствительный к кислороду флуоресцентный материал, включающий в себя сочетание:

чувствительного к кислороду красителя и не чувствительного к кислороду красителя, причем оба красителя являются флуорофорами,

оптического волокна, причем оптическое волокно имеет два конца для пропускания фотонов и передачи излучения от возбужденных флуорофоров, причем флуоресцентный материал расположен на конце оптического волокна; и

при этом оптическое волокно соединено на конце, дистальном по отношению к материалам-флуорофорам, с:

источником возбуждения для возбуждения флуорофоров; и

трихроичной призмой и двумя фотодетекторами или

трёхцветным датчиком;

причём трихроичная призма или трёхцветный датчик выполнены с возможностью разделения трёх длин волн, возбуждения и излучения от каждого красителя.

2. Устройство по п. 1, в котором оптическое волокно размещено в трубке.

3. Устройство по п. 2, в котором трубка имеет два конца, один из которых имеет резиновую мембрану и один или более вентиляционных клапанов, соединяемых с ней.

4. Устройство по п. 3, в котором резиновая мембрана является стойкой к авиакосмическим топливам и проницаемой для газообразного кислорода.

5. Устройство по любому предшествующему пункту, в котором чувствительный к кислороду краситель является возбуждаемым на той же длине волны, что и не чувствительный к кислороду краситель.

6. Устройство по любому предшествующему пункту, в котором чувствительный к кислороду краситель и не чувствительный к кислороду краситель диспергированы в стойкой к топливу, проницаемой для кислорода резине.

7. Устройство по п. 6, в котором резина является фторсиликоновой резиной.

8. Устройство по п. 1, в котором трехцветный датчик является интегральным RGB-датчиком.

9. Устройство по п. 1, в котором интенсивность или время жизни флуоресценции, излучаемой возбужденными флуорофорами, преобразуется в пропорциональные токи, которые преобразуются в напряжения.

10. Устройство по п. 9, в котором управляемые током усилители напряжения используются для преобразования токов в напряжения.

11. Способ самопроверки устройства по п. 9 или 10, в котором напряжения сравниваются друг с другом для заключения о характеристиках чувствительного к кислороду флуоресцентного материала.

Документы, цитированные в отчете о поиске Патент 2019 года RU2689286C2

Chen-Shane Chu, Yu-Lung Lo, "Ratiometric fiber-optic oxygen sensors based on sol-gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin", Sensor and Actuators B: Chemical 14 (2008) стр
ШТАНГЕН-ЦИРКУЛЬ С ВЫДВИЖНОЮ НОЖКОЮ 1922
  • Кушников Н.В.
SU711A1
RU 2007118605 A, 27.11.2008
EP 1928759 B1, 10.10.2012
Haibing Zhang, Ph.D., Andy Cloud, "Research Progress in Calenderable Fluorosilicone with Excellent Fuel Resistance", Arlon Silicone Technologies Division, 2007
Haibing Zhang, Ph.D., Andy Cloud, "The Permeability Characteristics of Silicone Rubber", Arlon Silicone Technologies Division, 2006
US 2003098918 A1, 29.05.2003
WO 2009052222 A1, 23.04.2009
US 2014016926 A1, 16.01.2014
Николай Савенко, "Усилители с токовой обратной связью", Современная электроника N2, 2006.

RU 2 689 286 C2

Авторы

Мадхав Калага

Даты

2019-05-24Публикация

2015-02-17Подача