Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя (ГТД).
Известен способ запуска с помощью воздушного потока [Лозицкий Л.П., Ветров А.Н., Дорошко СМ., Иванов В.П., Коняев Е.А. Конструкция и прочность авиационных газотурбинных двигателей. М.: Воздушный транспорт, 1992, стр. 458], в котором используют дополнительную турбину, вращение которой обеспечивают за счет мощного потока сжатого воздуха. Вращение турбины с помощью редуктора и муфты передают на основной вал газотурбинного двигателя при достижении необходимой частоты вращения газотурбинным двигателем происходит его запуск. Воздух, необходимый для вращения дополнительной турбины подают от бортового или аэродромного генератора сжатого воздуха.
Недостатком данного способа является, большой расход воздуха, что практически исключает автономность запуска.
Известен способ запуска с помощью порохового заряда [Системы запуска авиационных двигателей: Метод, указания / Самара, гос. аэрокосм, ун-т; Сост. И.В. Таммекиви. Самара, 2002, стр. 13], суть способа заключается в том, что пороховой заряд помещают в взрывозащищенную камеру. В качестве порохового заряда обычно используют нитропорох с добавкой веществ-флегматизаторов, замедляющих скорость горения заряда. В качестве воспламенителя обычно применяют порох, поджигаемый электрической искрой. Газы, выделяющиеся при горении порохового заряда, направляют на лопатки ротора турбины. Мощность, развиваемая турбиной, передается через редуктор и муфту сцепления ротору газотурбинного двигателя.
Недостатками данного способа являются, необходимость дозирования порохового заряда для каждой отдельной системы и условий запуска, кроме того пороховые газы вызывают обильное нагарообразование на деталях системы, что способствует быстрому ухудшению его характеристик в процессе эксплуатации, также применение взрывчатых веществ в качестве энергоносителя связано с опасностью повреждения системы. С уменьшением температуры окружающего воздуха энергия порохового заряда уменьшается, что вызывает уменьшение мощности стартера, в то время как необходимая для запуска мощность возрастает, что усложняет эксплуатацию пороховых турбостартеров.
Известен способ эксплуатации парогазовой установки в маневренном режиме [патент РФ №2585156, F01K 23/06, 29.12.2014], суть способа заключается в том, что для запуска газотурбинного двигателя используют дополнительную турбину, вращение которой обеспечивают парогазом. Для формирования парогаза используют перекись водорода и катализаторы, которые подают в парогазогенератор из отдельно расположенного баллона. За счет химической реакции сопровождаемой горением, перегретый водяной пар в смеси с кислородом, под большим давлением разгоняет дополнительную турбину, которая с помощью редуктора и муфты сцепления передает вращение главному валу газотурбинного двигателя.
Недостатком данного способа является, невысокая надежность системы запуска из-за использования взрывоопасной перекиси водорода. Также недостатком является высокая температура замерзания перекиси водорода -10°С.
Известен бесстартерный способ запуска [Системы запуска авиационных двигателей: Метод, указания / Самара, гос. аэрокосм, ун-т; Сост. И.В. Таммекиви. Самара, 2002, стр. 10], суть которого заключается в том, что для раскрутки газотурбинного двигателя используют его собственную турбину. В качестве рабочего тела применяют сжатый воздух, который подают на рабочие лопатки турбины.
Недостатком данного способа является низкий КПД турбины в начальный момент раскрутки, вследствие чего данная система запуска может применяться только на маломощных ГТД.
Наиболее близким по технической сущности и достигаемому результату является способ запуска с помощью электрического стартера [Лозицкий Л.П., Ветров А.Н., Дорошко С.М., Иванов В.П., Коняев Е.А. Конструкция и прочность авиационных газотурбинных двигателей. М.: Воздушный транспорт, 1992, стр. 455] реализуемый электродвигателем постоянного или переменного тока, работающего от бортовой или аэродромной аккумуляторной батареи. Обычно авиационные стартеры при пуске потребляют до 1-1,2 кА. Время их эксплуатации в стартерном режиме работы не превышает 40-60 секунд, после чего для повторной работы батареи необходимо на восстановление не менее 15 минут.
Недостатком данного способа является большой вес аккумуляторных батарей и падение их емкости с понижением температуры окружающего воздуха.
Наиболее близким по технической сущности и достигаемому результату является конструкция сверхвысокооборотного магнитоэлектрического генератора для микротурбинной установки [С. Zwyssig, J.W. Kolar, S.D. Round Mega-Speed Drive Systems: Pushing Beyond 1 Million RPM // Mechatronics, IEEE/ASME Transactions on, 2009, Vol. 14, No. 5, pp. 564-574], состоящая из безпазового статора в котором расположена обмотка из высокочастотного лицендрата, концентрично расточки статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально и вала, при этом вал сочленен с турбиной.
Недостатками данного устройства являются его значительные тепловыделения, обусловленные потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.
Задача изобретения - уменьшение массогабаритных характеристик и расширение функциональных возможностей системы запуска газотурбинного двигателя.
Технический результат - значительное снижение массы системы запуска газотурбинного двигателя, а также повышение надежности электрозапуска в условиях предельно низких и предельно высоких температур, благодаря использованию высокоскоростного магнитоэлектрического генератора с собственной газовой турбинной работающего в кратковременном режиме.
Поставленная задача решается, а технический результат достигается, способом запуска газотурбинного двигателя посредством стартера, по которому согласно изобретению, вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор, а мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения, тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя, причем магнитоэлектрический генератор, содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку; статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов
Поставленная задача решается, а технический результат достигается тем, что магнитоэлектрический генератор, согласно изобретению, используют в способе запуска газотурбинного двигателя.
Существо изобретения поясняется чертежами. На фиг. 1 изображен общий вид магнитоэлектрический генератора с газовой турбиной. На фиг. 2 изображен генератор в продольном разрезе!
Предложенное устройство содержит газовую турбину 1, на валу 2 которой установлен магнитоэлектрический генератор 3, статор 4, выполненный с внутренними пазами 5 и внешними пазами 6, на которые установлены тороидальные обмотки 7, постоянные магниты 8, расположены на роторе 9.
Предложенное устройство работает следующим образом: газовая турбина 1 вращает магнитоэлектрический генератор 3 со скоростью 100000 об/мин. Вырабатываемая мощность генератором составляет 30 кВт. При подключении стартера к генератору, по обмоткам стартера протекают токи равные 1200 А, тем самым обеспечивая необходимые пусковые характеристики устройства.
Пример конкретной реализации способа
В камеру сгорания собственной турбины магнитоэлектрического генератора подают топливо и сжатый воздух, после чего данную смесь воспламеняют. В результате сгорания, горячий газ под большим давлением приводит во вращение вал турбины магнитоэлектрического генератора и раскручивает его до скорости равной 100000 об/мин. Мощность, вырабатываемая магнитоэлектрическим генератором при такой частоте вращения, составляет 30 кВт. Для запуска авиационного двигателя модели ГТД-350 требуется высокий пусковой момент равный 240 Нм, для этого используют пусковой стартер. Мощность, вырабатываемая магнитоэлектрическим генератором, достаточна для обеспечения рабочего режима пускового стартера, поэтому магнитоэлектрический стартер используют в качестве источника питания. Длительность рабочего режима стартера до запуска авиационного двигателя ГТД-350 составляет 60 секунд, что является допустимым временем работы для магнитоэлектрического генератора.
Итак, заявляемое изобретение позволяет осуществлять запуск авиационного газотурбинного двигателя, используя магнитоэлектрический генератор заявленной конструкции, работающий в кратковременном режиме с собственной газовой турбинной и позволяет заменить аккумуляторные батареи, тем самым обеспечить снижение массогабаритных параметров системы запуска ГТД, а также повысить надежность электрозапуска в сложных метеорологических условиях.
название | год | авторы | номер документа |
---|---|---|---|
Электропривод для запуска газотурбинной установки | 2018 |
|
RU2694107C1 |
ИНТЕГРИРОВАННЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ СТАРТЕР-ГЕНЕРАТОР И СПОСОБ УПРАВЛЕНИЯ ИМ | 2015 |
|
RU2583837C1 |
ВИНТОВЕНТИЛЯТОРНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2358119C1 |
ВИНТОВЕНТИЛЯТОРНЫЙ АВИАЦИОННЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2358138C1 |
ВИНТОВЕНТИЛЯТОРНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2379523C2 |
Способ запуска газотурбинного двигателя | 2018 |
|
RU2680287C1 |
ОСЕВОЙ КОМПРЕССОР | 1993 |
|
RU2057970C1 |
ТУРБОВИНТОВОЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2359131C1 |
Электростартер для запуска газотурбинных установок | 2017 |
|
RU2694555C2 |
ВИНТОВЕНТИЛЯТОРНЫЙ АВИАЦИОННЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2022 |
|
RU2816769C1 |
Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя. Предлагается способ запуска газотурбинного двигателя посредством стартера. Вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор. Мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения. Тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя. Причем магнитоэлектрический генератор содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку. Статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов. Технический результат - значительное снижение массы системы запуска газотурбинного двигателя, а также повышение надежности электрозапуска в условиях предельно низких и предельно высоких температур, благодаря использованию высокоскоростного магнитоэлектрического генератора с собственной газовой турбиной, работающего в кратковременном режиме. 2 н.п. ф-лы, 2 ил.
1. Способ запуска газотурбинного двигателя посредством стартера, отличающийся тем, что вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор, а мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения, тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя, причем магнитоэлектрический генератор содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку; статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов.
2. Магнитоэлектрический генератор, отличающийся тем, что его используют в способе запуска газотурбинного двигателя по п. 1.
US 4456830 A, 26.06.1984 | |||
Магнитоэлектрический генератор | 1977 |
|
SU677044A1 |
ЭЛЕКТРОМАШИНА | 2014 |
|
RU2549883C1 |
СТАРТЕР-ГЕНЕРАТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЕГО УПРАВЛЕНИЯ | 2010 |
|
RU2528950C2 |
НИЗКОСКОРОСТНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С КОЛЬЦЕВЫМ СТАТОРОМ | 2009 |
|
RU2417506C2 |
Авторы
Даты
2019-05-28—Публикация
2018-04-09—Подача