ИНТЕГРИРОВАННЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ СТАРТЕР-ГЕНЕРАТОР И СПОСОБ УПРАВЛЕНИЯ ИМ Российский патент 2016 года по МПК H02K21/02 H02K21/12 H02K19/36 

Описание патента на изобретение RU2583837C1

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск авиационного двигателя и электроснабжение бортовой системы самолета.

Известен стартер-генератор [Ютт В.Е. Электрооборудование автомобилей. - М.: Транспорт, 1995. - 303 с.], состоящий из коллекторного двигателя постоянного тока, механической передачи и генератора переменного тока с выпрямителем и обмоткой возбуждения на роторе, присоединенной через контактные кольца к устройству регулирования напряжения генератора, и механически подсоединенный к валу двигателя через ременную передачу. Ротор коллекторного двигателя в стартерном режиме работы соединен механически с маховиком вала двигателя внутреннего сгорания.

Недостатками данного устройства являются сложность конструкции, состоящей из двух электрических машин, и наличие механического редуктора с ременной передачей. Также недостатком является наличие подвижных контактов - щеточно-коллекторного узла и контактных колец, что снижает надежность работы электрической машины в целом и увеличивает потери энергии.

Известно устройство двухскоростного синхронного двигателя с постоянными магнитами [авторское свидетельство СССР №201522, H02K 21/14, 01.01.1967]. Статор двигателя представляет собой статор машины переменного тока традиционного исполнения, в пазах которого расположена распределенная полюснопереключаемая обмотка. Ротор двигателя имеет две полюсные системы, образуемые постоянными магнитами, каждая из которых соответствует определенному числу полюсов обмотки статора и расположены они рядом на одном валу двигателя.

Недостатком данного устройства являются высокие массогабаритные показатели двигателя, обусловленные наличием нескольких полюсных систем ротора.

Известно устройство [патент РФ №2321765, H02N 11/00, 10.04.2008], состоящее из двухфазной вентильно-индукторной машины с электромагнитной асимметрией и силовой части системы управления. Основную обмотку каждой из двух фаз подключают к источнику питания через один транзистор инвертора, а каждую из рекуперационных обмоток двух фаз подключают к источнику питания через один диод инвертора.

Недостатками данного устройства являются высокие массогабаритные показатели, а также сложная система питания электрической машины, которая увеличивает потери энергии на возбуждение стартера.

Наиболее близким по технической сущности и достигаемому результату является устройство [патент US №8269390 B2, 18.09.2012], представляющее собой стартер-генератор, содержащий вал, на котором установлены постоянные магниты, магнитопровод статора, на котором расположены обмотки, и блок системы управления выпрямительными элементами. На валу расположены постоянные магниты различных типов: Nd-Fe-B, Al-Ni-Co и Fe-Cr-Co. Данные магниты обладают разными значениями коэрцитивной силы от 100 кА/м до 950 кА/м. При работе стартер-генератора поле реакции якоря, создаваемое током, протекающим в обмотке статора, воздействует на постоянные магниты, расположенные на валу, в результате чего магниты с минимальными значениями коэрцитивной силы размагничиваются и тем самым отключаются дополнительные полюса.

Недостатком данного устройства является температурное ограничение режима работы из-за используемых в данном устройстве постоянных магнитов из сплава Nd-Fe-B, которые обладают рабочей температурой до 180 градусов.

Задача изобретения - расширение функциональных возможностей стартер-генератора благодаря его интеграции в газотурбинный двигатель; упрощение способа его управления за счет автоматического изменения числа активных полюсов стартер-генератора в зависимости от режима работы газотурбинного двигателя без дополнительной электроники.

Технический результат - стабильная работа стартер-генератора в составе газотурбинного двигателя в температурном режиме до 450°C за счет автоматического уменьшения числа полюсов на валу при увеличении его температуры, связанной с переходом в режим генератора, и наоборот, увеличение числа полюсов при охлаждении и переходе в режим стартера.

Поставленная задача решается, а технический результат достигается тем, что в стартер-генераторе, содержащем вал, на котором установлены постоянные магниты, магнитопровод статора, на котором расположены обмотки, блок системы управления выпрямительными элементами, согласно изобретению в пазах статора расположена полюснопереключаемая обмотка, при этом вал стартер-генератора и газотурбинного двигателя выполнен единым, причем на валу установлены постоянные магниты с чередующимися полярностями и различными допустимыми рабочими температурами.

Поставленная задача решается, а технический результат достигается также способом управления стартер-генератором, по которому в режиме работы генератором уменьшают число активных полюсов, тем самым уменьшают частоту вырабатываемого тока, а в режиме работы стартером число активных полюсов увеличивают, обеспечивая при этом достаточный пусковой момент, при автоматическом под воздействием температуры размагничивании или намагничивании полюсов в зависимости от режима работы стартер-генератора.

Существо изобретения поясняется чертежами. На фиг. 1 изображен общий вид стартер-генератора, интегрированного в газотурбинный двигатель. На фиг. 2 изображен стартер-генератор в продольном разрезе.

Предложенное устройство (фиг. 1) содержит газотурбинный двигатель 1, на вал 2 которого установлен стартер-генератор 7, также на валу расположены постоянные магниты 3, в статоре 4 стартер-генератора 7 расположена полюснопереключаемая обмотка 6 для стабилизации напряжения, выводы полюснопереключаемой обмотки соединены с системой управления 5.

Предложенное устройство работает следующим образом: стартер-генератор 7 разгоняет вал 2 газотурбинного двигателя до пусковой частоты вращения, при достижении которой в камере сгорания создается расход воздуха и давление, достаточное для надежного воспламенения топлива и вступления в работу турбины, т.е. на этапе воспламенения топлива температура воздуха стартер-генератора равна температуре окружающего воздуха (до +50°C в условиях тропического климата).

Пример конкретной реализации способа

Для запуска авиационного двигателя модели ГТД-350 требуется высокий пусковой момент M=240 Н·м. Поскольку пусковой момент M связан с частотой вращения n соотношением:

где Pном - номинальная мощность двигателя, кВт;

а частота вращения, связана с числом пар полюсов p соотношением:

где f - частота тока, Гц;

увеличение числа пар полюсов позволит создать больший пусковой момент. Учитывая это, в конструкции вала стартер-генератора используется большое число пар полюсов, которые представляют собой чередующиеся постоянные магниты сплавов SmCo5 и Sm2Co17. Данные магниты имеют разные рабочие температуры, так, например, сплав SmCo5 имеет ограничение в 250°C, а Sm2Co17 до 550°C. Таким образом, при достижении пусковой скорости вращения турбины происходит воспламенение топливно-воздушной смеси, начинает работать турбина, т.е. развивать вращающий момент, и увеличивается температура окружающей среды. При этом стартер-генератор и турбина совместно раскручивают вал газотурбинного двигателя. С ростом температуры газа возрастает вращающийся момент, развиваемый турбиной, и снижается ввиду повышения температуры постоянных магнитов и обмоток момент, развиваемый стартер-генератором, и в определенный момент стартер-генератор переходит в генераторный режим. Как известно, в генераторном режиме температура стартер-генератора поднимается до 350°C, из-за этого часть постоянных магнитов из сплава SmCo5 теряют свои магнитные свойства, что ведет к тому, что количество полюсов стартер-генератора сокращается, что позволяет уменьшить частоту тока, вырабатываемого генератором до нужного значения.

Таким образом, данный стартер-генератор в зависимости от режима работы авиационного двигателя меняет свою полюсную систему на оптимальную.

Итак, заявленное изобретение обеспечивает максимальные выходные энергетические характеристики во всех режимах работы.

Похожие патенты RU2583837C1

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ СТАРТЕР-ГЕНЕРАТОРОМ, ИНТЕГРИРОВАННЫМ В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ПРИ КОРОТКОМ ЗАМЫКАНИИ 2016
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Вавилов Вячеслав Евгеньевич
  • Каримов Руслан Динарович
RU2630285C1
Система управления и передачи вращательного момента на винт(ы) в беспилотных летательных аппаратах (БПЛА), стартер-генератор, плата управления стартером-генератором и амортизатор для этой системы 2020
  • Драненков Антон Николаевич
  • Куприн Михаил Николаевич
  • Герасимов Игорь Владимирович
  • Соловьев Евгений Вячеславович
  • Поляков Дмитрий Андреевич
RU2741136C1
Способ и устройство для запуска газотурбинного двигателя 2018
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Вавилов Вячеслав Евгеньевич
  • Каримов Руслан Динарович
RU2689499C1
Электропривод для запуска газотурбинной установки 2018
  • Буряшкин Сергей Львович
RU2694107C1
СТАРТЕР-ГЕНЕРАТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЕГО УПРАВЛЕНИЯ 2010
  • Де Вержифосс Эрик
RU2528950C2
Способ запуска газотурбинного двигателя 2018
  • Сапсалев Анатолий Васильевич
  • Жарков Максим Андреевич
  • Харитонов Сергей Александрович
  • Бачурин Петр Александрович
RU2680287C1
ДВИГАТЕЛЬ С ПОСТОЯННЫМИ МАГНИТАМИ И ПРЯМЫМ ПУСКОМ ОТ СЕТИ И СПОСОБ ЕГО ВКЛЮЧЕНИЯ 2016
  • Хутх Герхард
  • Ширмер Ганс-Георг
RU2739874C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2016
  • Григорьев Алексей Владимирович
  • Соловьева Анастасия Валерьевна
  • Журенков Юрий Николаевич
RU2657051C1
Двухскоростной синхронный электро-дВигАТЕль 1979
  • Зайчик Виктор Моисеевич
  • Богомолов Эдуард Алексеевич
  • Коршунова Алла Афанасьевна
  • Самойленко Галина Ивановна
SU843120A1
ОСЕВОЙ КОМПРЕССОР 1993
  • Терровере В.Р.
RU2057970C1

Иллюстрации к изобретению RU 2 583 837 C1

Реферат патента 2016 года ИНТЕГРИРОВАННЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ СТАРТЕР-ГЕНЕРАТОР И СПОСОБ УПРАВЛЕНИЯ ИМ

Изобретение относится к электротехнике, а именно к устройствам запуска авиационного двигателя и электроснабжения бортовой системы самолета. Стартер-генератор, вал ротора которого выполнен единым с валом газотурбинного двигателя, причем на валу установлены постоянные магниты с чередующимися полярностями и различными допустимыми рабочими температурами, а в пазах статора расположена полюснопереключаемая обмотка. Способ управления интегрированным стартер-генератором состоит в уменьшении числа активных полюсов в режиме работы генератором, тем самым снижая частоту вырабатываемого тока, а в режиме работы стартером в увеличении числа активных полюсов, обеспечивая при этом достаточный пусковой момент, при автоматическом под воздействием температуры размагничивании или намагничивании постоянных магнитов на роторе в зависимости от режима работы стартер-генератора. Технический результат состоит в обеспечении стабильной работы интегрированного стартер-генератора в температурном режиме до 450°C за счет автоматического уменьшения числа полюсов при превышении допустимой рабочей температуры и переходе в режим генератора и, наоборот, увеличении числа полюсов при снижении рабочей температуры ниже допустимой и переходе в режим стартера. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 583 837 C1

1. Стартер-генератор, содержащий вал, на котором установлены постоянные магниты, магнитопровод статора, на котором расположены обмотки, блок системы управления выпрямительными элементами, отличающийся тем, что в пазах статора расположена полюснопереключаемая обмотка, при этом вал стартер-генератора и газотурбинного двигателя выполнен единым, причем на валу установлены постоянные магниты с чередующимися полярностями и различными допустимыми рабочими температурами.

2. Способ управления стартер-генератором, по которому в режиме работы генератором уменьшают число активных полюсов, тем самым уменьшают частоту вырабатываемого тока, а в режиме работы стартером число активных полюсов увеличивают, обеспечивая при этом достаточный пусковой момент, при автоматическом под воздействием температуры размагничивании или намагничивании полюсов в зависимости от режима работы стартер-генератора.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583837C1

ДВУХСКОРОСТНОЙ СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 0
  • Ф. М. Юферов, В. П. Колесников, И. Н. Мил Ков, Н. Н. Фархуллин
  • И. И. Васильченко
SU201522A1
Полюсопереключаемая магнито-электрическая машина 1982
  • Кронеберг Юрий Николаевич
  • Жибинов Александр Степанович
SU1019556A1
US 20030102756 A1, 05.07.2003
EP 1233498 A2, 25.07.2001
US 2010127496 A1, 27.05.2010
US 6451132 B1, 17.09.2002
US 20130098060 A1, 25.04.2013
US 20100327689 A1, 30.12.2010.

RU 2 583 837 C1

Авторы

Исмагилов Флюр Рашитович

Хайруллин Ирек Ханифович

Вавилов Вячеслав Евгеньевич

Каримов Руслан Динарович

Тарасов Николай Геннадиевич

Минияров Айбулат Халяфович

Даты

2016-05-10Публикация

2015-01-12Подача