Теплообменный аппарат Российский патент 2019 года по МПК F28D7/02 F28F9/13 

Описание патента на изобретение RU2690308C1

Предлагаемое техническое решение относится к области теплообменного оборудования, используемого в различных отраслях промышленности, в частности к змеевиковым теплообменникам, которые могут быть применены в системах аварийного расхолаживания ядерных энергетических установок.

Известны вертикальные змеевиковые теплообменники, содержащие цилиндрический корпус, по оси которого установлена цилиндрическая обечайка с рядами витков змеевиковых теплообменных труб, объединенных при помощи коллекторов, (см., например, а.с. №879237 опуб. 07.11.1981, кл. МПК F28D 7/02, а.с. №1206598 опуб. 23.01.1986, кл. МПК F28D 7/02)

Теплообменники имеют значительные габариты и металлоемкость, в таких теплообменниках затруднен ремонт текущих секций и невозможна их замена.

Известен вертикальный кольцевой теплообменник, содержащий цилиндрический корпус, концентрично размещенную обечайку и расположенные между ними изогнутые относительно вертикальной оси теплообменные элементы, заключенные в кожух и подключенные к первичным коллекторам подвода и отвода циркулирующего внутри труб теплоносителя образуя модули. Коллектора подвода и отвода соединены с трубопроводами подвода и отвода теплоносителя. (См., например, патент RU №2041439 опубл. 09.08.1995 по кл. МПК F28D 7/10.)

В теплообменнике такой конструкции упрощается поиск текущих модулей и повышается ремонтопригодность, так как появляется возможность замены вышедших из строя модулей.

Известен теплообменный аппарат, содержащий цилиндрический корпус с размещенной концентрично корпусу центральной обечайкой образующей с корпусом кольцевую полость, в которой расположены теплообменные элементы, каждый из которых выполнен в виде многозаходных змеевиков с коллекторами подвода и отвода теплоносителя, выполненными в виде тора и соединенными через тройники с промежуточными трубопроводами, которые в свою очередь соединены с водяным и паровым коллекторами, расположенными под корпусом и над корпусом. (См., например, патент на полезную модель Ru №146849 от 19.09.2014 г. по кл. МПК F28F 7/02)

Недостатком, обусловленным наличием непосредственного соединения промежуточных трубопроводов с водяным и паровым коллекторами, является проблематичность компенсации температурных расширений между корпусом теплообменника и паровым и водяным коллекторами, расположенными над крышкой и под днищем теплообменника, а также компенсация нагрузок на патрубки паровых и водяных коллекторов от подсоединяемых трубопроводов.

Кроме того, недостатками являются сложность и повышенные массогабаритные характеристики конструкции паровых и водяных коллекторов из-за наличия на них дополнительных штуцеров для поиска неплотного теплообменного элемента, а также отсутствие секционирования теплообменной поверхности.

По наибольшему числу общих признаков теплообменник по данному патенту выбран за прототип.

Технической задачей является создание теплообменника, в котором теплообменные элементы объединены в группы несколькими паровыми и водяными коллекторами, а соединительные трубы снабжены тройниками.

Решение поставленной задачи позволит не компенсировать подводящие трубопроводы, упростить конструкцию паровых и водяных коллекторов и, при увеличении мощности теплообменника, иметь пониженные массогабаритные характеристики системы аварийного расхолаживания.

Задача решается тем, что в теплообменном аппарате, содержащем цилиндрический корпус с размещенной концентрично корпусу центральной обечайкой образующей с корпусом кольцевую полость, в которой расположены теплообменные элементы, каждый из которых выполнен в виде многозаходных змеевиков с коллекторами подвода и отвода теплоносителя, выполненными в виде тора и соединенными через тройники с промежуточными трубопроводами, которые в свою очередь соединены с водяным и паровым коллекторами, расположенными под корпусом и над корпусом, промежуточные трубопроводы соединены с водяным и паровым коллекторами через соединительные трубы, расположенными в произвольной плоскости относительно плоскости коллекторов.

Кроме того соединительные трубы снабжены тройниками, а теплообменные элементы объединены в группы несколькими паровыми и водяными коллекторами.

Это дает возможность за счет дополнительных соединительных труб необходимой для компенсации температурных расширений конфигурации не компенсировать подводящие трубопроводы. Имея тройники на дополнительных трубах обеспечить через них поиск неплотных теплообменных элементов, тем самым исключить дополнительные штуцера на коллекторах, тем самым упростить их конструкцию. Наличие нескольких паровых и водяных коллекторов объединяющих группы теплообменных элементов позволяет иметь в системе аварийного расхолаживания несколько независимых контуров расхолаживания по второму контуру в одном корпусе, что существенно снижает массогабаритные характеристики всей системы, что особенно актуально для судовых ЯЭУ.

Сущность технического решения поясняется чертежами, где:

- фиг. 1 показан общий вид теплообменного аппарата, который предназначен для осуществления теплообмена между средой второго контура (пар-вода), циркулирующей во внутритрубном пространстве, и охлаждающей средой (вода-пар), циркулирующей в межтрубном пространстве. Теплообмен происходит в условиях естественной циркуляции по контуру охлаждающей и охлаждаемой сред в системе аварийного расхолаживания парогенерирующего блока ядерной энергетической установки при авариях, связанных с длительным обесточиванием;

- на фиг. 2 показан вид А на фиг. 1;

- на фиг. 3 показан выносной элемент Б на фиг. 1.

Теплообменный аппарат состоит из цилиндрического корпуса 1, снабженного крышкой 2 и днищем 3. Внутри корпуса 1 размещена цилиндрическая обечайка 4, которая закреплена на крышке 2 соосно с патрубком подвода 5 охлаждающего теплоносителя, циркулирующего в межтрубном пространстве. Обечайка 4 служит для организации циркуляции среды в межтрубном пространстве. В верхней части обечайки 4 выполнены отверстия 6, гидравлически связывающие внутреннюю полость обечайки 4 с кольцевой полостью 7, образованной обечайкой 4 и корпусом 1. В кольцевой полости расположена теплообменная поверхность, образованная теплообменными элементами 8, образующими модули и выполненными в виде нескольких рядов многозаходных змеевиков, навитых на оправку 9. Концы змеевиков теплообменных элементов 8 объединены по входу и выходу первичными коллекторами подвода 10 и отвода 11, выполненными в виде торов. Первичные коллекторы 10 и 11 через тройники 12, промежуточные трубопроводы 13, 14 и через соединительные трубы 15, 16, 17, 18 соединены с вторичными раздающими 19, 20 и собирающими 21, 22 коллекторами, расположенными соответственно под днищем 3 и над крышкой 2, которые также выполнены в виде тора. Таким образом, теплообменные элементы 8 объединены в независимые группы. Соединительные трубы 15, 16, 17, 18 снабжены тройниками 23 через которые обеспечивается поиск неплотного теплообменного элемента при его разгерметизации. На днище 3 корпуса 1 расположен штуцер 24 для соединения с емкостью запаса воды.

На наружной поверхности корпуса 1 закреплены опоры 25 для установки и закрепления теплообменного аппарата.

Во время нормальной эксплуатации реакторной установки теплообменный аппарат по внутритрубному и межтрубному пространству заполнен водой.

По внутритрубному пространству теплообменный аппарат подсоединен к парогенератору, а по межтрубному пространству к аварийной емкости с запасом воды (на чертежах не показано).

При авариях пар из парогенератора поступает во вторичные раздающие коллектора 19, 20, откуда через первичные коллектора 10 раздается по теплообменным элементам 8. Проходя через теплообменные элементы 8, пар конденсируется, охлаждаясь водой, находящейся в межтрубном пространстве, и поступает в собирающие коллектора 21, 22. Вода, находящаяся в межтрубном пространстве, испаряется, и пар или пароводяная смесь выходит из теплообменного аппарата в аварийную емкость с запасом воды.

Соединительные трубы 15, 16, 17, 18 за счет необходимой конфигурации компенсируют температурные расширения между корпусом теплообменника и вторичными раздающими 19, 20 и собирающими 21, 22 коллекторами, что позволяет сократить до минимума промежуточные трубопроводы 13 и тем самым уменьшить габариты теплообменника (при непосредственном соединении промежуточных трубопроводов со вторичными коллекторами компенсация температурных расширений достигается за счет увеличения расстояния между корпусом и коллекторами).

Поиск неплотного элемента осуществляется через тройники 23 на соединительных трубопроводах. При этом на них срезаются заглушки. К одному из тройников подсоединяется гидропресс при этом соединительный трубопровод, отсекается от коллектора, а другой - глушится, при этом соединительный трубопровод также отсекается от коллектора. Неплотный теплообменный элемент определяется по падению давления при гидравлических испытаниях. Данная операция проводится последовательно с каждым теплообменным элементом теплообменника.

Коллектора 19, 20 и 21, 22 объединяют теплообменные элементы 8 в независимые группы расхолаживания по второму контуру располагаемых в одном корпусе, тем самым позволяя сократить число корпусных конструкций теплообменников и снизить массогабаритные характеристики всей системы.

Таким образом, соединение промежуточных трубопроводов с водяным и паровым коллекторами через соединительные трубы, снабженные тройниками и расположенные в произвольной плоскости относительно плоскости коллекторов, позволяет не компенсировать подводящие трубопроводы, упростить конструкцию паровых и водяных коллекторов и иметь, при увеличении мощности теплообменника, пониженные массогабаритные характеристики системы аварийного расхолаживания.

Похожие патенты RU2690308C1

название год авторы номер документа
ВЫСОКОТЕМПЕРАТУРНЫЙ ГАЗООХЛАЖДАЕМЫЙ ТЕПЛООБМЕННИК 2002
  • Рулев В.М.
  • Камашев Б.М.
  • Бых О.А.
  • Красильщиков А.Е.
  • Сергеев А.И.
  • Соболев В.А.
RU2233412C2
ПАРОГЕНЕРАТОР С ГОРИЗОНТАЛЬНЫМ ПУЧКОМ ТЕПЛООБМЕННЫХ ТРУБ И СПОСОБ ЕГО СБОРКИ 2014
  • Лахов Дмитрий Александрович
  • Сафронов Алексей Владимирович
RU2583321C1
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2014
  • Савельев Владимир Николаевич
  • Почечуев Сергей Васильевич
  • Проничев Александр Николаевич
RU2570275C1
СИСТЕМА АВАРИЙНОГО РАСХОЛАЖИВАНИЯ ЯДЕРНОГО РЕАКТОРА 2016
  • Бых Олег Анатольевич
  • Красильщиков Александр Ефимович
  • Родин Владислав Васильевич
  • Щекин Дмитрий Владимирович
RU2653053C2
ТЕПЛООБМЕННИК 2007
  • Шамароков Александр Сергеевич
  • Балусов Борис Алексеевич
  • Жингель Владимир Иосифович
  • Тарасова Светлана Валентиновна
RU2341750C1
ПАРОГЕНЕРАТОР 2001
  • Камашев Б.М.
  • Рулев В.М.
  • Бабин В.А.
  • Бых О.А.
  • Аношин В.М.
  • Захаров Е.В.
RU2196272C2
СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛА ОТ ВОДОВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА ЧЕРЕЗ ПАРОГЕНЕРАТОР 2014
  • Безлепкин Владимир Викторович
  • Сидоров Валерий Григорьевич
  • Алексеев Сергей Борисович
  • Светлов Сергей Викторович
  • Кухтевич Владимир Олегович
  • Семашко Сергей Евгеньевич
  • Варданидзе Теймураз Георгиевич
  • Ивков Игорь Михайлович
RU2595640C2
ГОРИЗОНТАЛЬНЫЙ ПАРОГЕНЕРАТОР АТОМНОЙ ЭЛЕКТРОСТАНЦИИ И СПОСОБ ЕГО СБОРКИ 2014
  • Лахов Дмитрий Александрович
  • Сафронов Алексей Владимирович
RU2570992C1
ТЕХНОЛОГИЧЕСКИЙ ТЕПЛООБМЕННИК АТОМНОЙ ЭЛЕКТРОСТАНЦИИ 2007
  • Берляев Петр Васильевич
  • Филимонов Юрий Валентинович
  • Фальковский Лев Наумович
RU2354909C1
ГОРИЗОНТАЛЬНЫЙ ПАРОГЕНЕРАТОР ДЛЯ РЕАКТОРНОЙ УСТАНОВКИ С ВОДО-ВОДЯНЫМ ЭНЕРГЕТИЧЕСКИМ РЕАКТОРОМ И РЕАКТОРНАЯ УСТАНОВКА С УКАЗАННЫМ ПАРОГЕНЕРАТОРОМ 2014
  • Лахов Дмитрий Александрович
  • Сафронов Алексей Владимирович
RU2583324C1

Иллюстрации к изобретению RU 2 690 308 C1

Реферат патента 2019 года Теплообменный аппарат

Изобретение относится к области теплообменного оборудования, используемого в различных отраслях промышленности, в частности к змеевиковым теплообменникам, которые могут быть применены в системах аварийного расхолаживания ядерных энергетических установок. В теплообменном аппарате, содержащем цилиндрический корпус с размещенной концентрично корпусу центральной обечайкой, образующей с корпусом кольцевую полость, в которой расположены теплообменные элементы, каждый из которых выполнен в виде многозаходных змеевиков с коллекторами подвода и отвода теплоносителя, выполненными в виде тора и соединенными через тройники с промежуточными трубопроводами, которые, в свою очередь, соединены с водяным и паровым коллекторами, расположенными под корпусом и над корпусом, промежуточные трубопроводы соединены с водяным и паровым коллекторами через соединительные трубы, расположенные в произвольной плоскости относительно плоскости коллекторов. Соединительные трубы могут быть снабжены тройниками, а теплообменные элементы объединены в группы несколькими паровыми и водяными коллекторами. Технический результат – уменьшение габаритов теплообменника путем сокращения расстояния между корпусом и коллекторами. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 690 308 C1

1. Теплообменный аппарат, содержащий цилиндрический корпус с размещенной концентрично корпусу центральной обечайкой, образующей с корпусом кольцевую полость, в которой расположены теплообменные элементы, каждый из которых выполнен в виде многозаходных змеевиков с коллекторами подвода и отвода теплоносителя, выполненными в виде тора и соединенными через тройники с промежуточными трубопроводами, которые, в свою очередь, соединены с водяным и паровым коллекторами, расположенными под корпусом и над корпусом, отличающийся тем, что промежуточные трубопроводы соединены с водяным и паровым коллекторами через соединительные трубы, расположенные в произвольной плоскости относительно плоскости коллекторов.

2. Теплообменный аппарат по п. 1, отличающийся тем, что соединительные трубы снабжены тройниками.

3. Теплообменный аппарат по п. 1, отличающийся тем, что теплообменные элементы объединены в группы несколькими паровыми и водяными коллекторами.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690308C1

Устройство для крепления лобовых частей обмотки статора асинхронного электродвигателя 1961
  • Высоцкий Д.П.
SU146849A1
ВЕРТИКАЛЬНЫЙ КОЛЬЦЕВОЙ ТЕПЛООБМЕННИК 1991
  • Вашурин С.Ф.
  • Дмитриев А.В.
  • Добродеев М.К.
  • Подпрятов С.Л.
RU2041439C1
Теплообменник 1983
  • Шамароков Александр Сергеевич
  • Чугунов Михаил Георгиевич
  • Сурнов Вячеслав Анатольевич
SU1206598A1
EP 1962042 B1, 17.10.2012
WO 2011120096 A1, 06.10.2011.

RU 2 690 308 C1

Авторы

Красильщиков Александр Ефимович

Родин Владислав Васильевич

Каргин Григорий Владимирович

Щекин Дмитрий Владимирович

Тюхтин Михаил Евгеньевич

Полуничев Виталий Иванович

Даты

2019-05-31Публикация

2018-01-09Подача