Кожухотрубчатый теплообменный аппарат Российский патент 2019 года по МПК F28D7/16 

Описание патента на изобретение RU2693804C1

Изобретение относится к кожухотрубчатым теплообменным аппаратам, и может быть использовано в химической, нефтехимической и других отраслях промышленности.

Известны кожухотрубчатые теплообменные аппараты, в которых имеется пучок теплообменных труб, расположенный в кожухе. Теплообменные трубы закреплены в трубных решетках. Аппараты снабжены камерами, в которых имеются штуцера для ввода и вывода теплоносителя в трубное пространство, а на кожухе имеются штуцера для ввода и вывода теплоносителя в межтрубное пространство. Аппараты могут быть вертикальными и горизонтальными. Для улучшения теплообмена в трубном пространстве устанавливают сегментные поперечные перегородки. Трубные решетки соединяют с кожухом сваркой или с помощью фланцевых соединений. Конструкции кожухотрубчатых аппаратов стандартизированы. (Основные процессы и аппараты химической технологии: пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского. 2-е изд., перераб. и дополн. М.: Химия, 1991. - 496 с.)

Из-за особенностей размещения теплообменных труб и требований к прочности трубной решетки в кожухотрубчатых теплообменных аппаратах существует зазор между трубным пучком и кожухом аппарата. Величина этого зазора во много раз превышает величину зазора между теплообменными трубами. При движении теплоносителя в межтрубном пространстве возникает пристеночный эффект, при котором значительная часть теплоносителя движется в зазоре между трубным пучком и кожухом аппарата. Снижается скорость движения потока во внутренней части трубного пучка, падает коэффициент теплоотдачи и эффективность теплообмена. При малой скорости потока теплоносителя, как правило, увеличивается скорость накопления загрязнений на поверхности теплообменных труб. Теплообменные трубы в средней части трубного пучка и трубы на периметре трубного пучка находятся в разных условиях теплообмена. На периметре поток теплоносителя больше по величине и имеет большую скорость. Вследствие большой величины этот поток медленнее меняет температуру, вследствие высокой скорости выше коэффициент теплоотдачи. То есть температура труб на периметре трубного пучка значительно ближе к температуре теплоносителя в межтрубном пространстве, чем температура труб в средней части трубного пучка. Разное температурное удлинение труб создает дополнительные напряжения в трубах, трубных решетках и местах крепления труб в трубных решетках. В аппаратах жесткого типа напряжения передаются и на кожух аппарата. Для снижения пристеночного эффекта применяют различного вида противобайпасные устройства.

Наиболее близким аналогом (прототипом) является кожухотрубчатый теплообменный аппарат с трубным пучком, размещенным в кожухе, у которого в зазоре между трубным пучком и кожухом аппарата расположен наполнитель. (Патент JPN 01300192 А, МПК F28D 7/16, опубл. 04.12.1989).

То, что в кожухотрубчатом теплообменном аппарате с трубным пучком, размещенным в кожухе, в зазоре между трубным пучком и кожухом аппарата расположен наполнитель, приводит к тому, что затрудняется или полностью прекращается движение теплоносителя в зазоре между трубным пучком и кожухом аппарата. Повышается скорость движения теплоносителя в трубном пучке, увеличивается коэффициент теплоотдачи и растет эффективность теплообмена. Теплообменные трубы работают в близких условиях, снижается разность температур труб, и уменьшаются связанные с этим дополнительные напряжения. Снижение напряжений повышает надежность теплообменных аппаратов. Однако наполнитель должен отвечать ряду требований. Для монтажа в межтрубном пространстве наполнитель должен быть изготовлен в виде некоторого количества цельных элементов. Зазор между трубным пучком и кожухом имеет сложную конфигурацию, особенно при наличии поперечных перегородок, отбойников и других элементов. Изготавливать элементы наполнителя жесткой конструкции и сложной формы не технологично. То есть наполнитель должен быть гибким легким, недорогим, изготовленным из доступных материалов. Наполнитель не должен создавать препятствий обтеканию теплообменных труб теплоносителем в местах контакта наполнителя и теплообменных труб. При заполнении аппарата жидким теплоносителем, в нем не должен оставаться воздух, а при опорожнении аппарата в наполнителе не должно оставаться много жидкости. Иначе это осложнит пропарку аппарата при подготовке к ремонту. Существующие наполнители не в полной мере отвечают этим требованиям, и теплообменные аппараты с наполнителем не нашли широкого применения.

Задачей изобретения является повышение эффективности теплообмена в кожухотрубчатых теплообменных аппаратах и повышение надежности теплообменных аппаратов.

Технический результат достигается тем, что в кожухотрубчатом теплообменном аппарате с трубным пучком, размещенным в кожухе, в котором в зазоре между трубным пучком и кожухом аппарата, расположен наполнитель, согласно изобретению, наполнитель выполнен из чередующихся слоев объемной сетки и малопроницаемого материала.

Технический результат достигается также тем, что наполнитель выполнен из нескольких слоев гофрированного листового материала.

В первом варианте наполнитель выполнен из чередующихся слоев объемной сетки, например, сетки Рабица, и малопроницаемого материала, например, стеклоткани. Во втором варианте наполнитель выполнен из нескольких слоев гофрированного листового материала. Такие гофрированные материалы широко используются в промышленности для изготовления регулярных насадок, например насадок типа Зульцер. Наполнители предложенной конструкции обладают высокой гибкостью и им легко придать нужную форму. Материалы для изготовления наполнителя являются легкими, недорогими и доступными. Предложенные наполнители не создают препятствий обтеканию теплообменных труб теплоносителем в местах контакта наполнителя и теплообменных труб. Слой объемной сетки, примыкающий к теплообменным трубам, обеспечивает хорошее обтекание труб теплоносителем, а малопроницаемый материал препятствует проникновению теплоносителя в следующие слои наполнителя. Слой гофрированного материала тоже обеспечивает хорошее обтекание труб теплоносителем и препятствует проникновению теплоносителя в следующие слои наполнителя. Хорошее обтекание труб улучшает теплообмен, причем теплообменные трубы в средней части трубного пучка и трубы на периметре трубного пучка находятся в практически равных условиях, что приводит к уменьшению разницы температурных деформаций и снижению напряжений. При заполнении аппарата жидким теплоносителем, в наполнителе не остается воздух. При опорожнении аппарата в наполнителе остается мало жидкости, что облегчает пропарку аппарата при подготовке к ремонту.

На фиг. 1 изображен кожухотрубчатый теплообменный аппарат. На фиг. 2 изображен наполнитель, выполненный из чередующихся слоев объемной сетки и малопроницаемого материала. На фиг. 3 изображен наполнитель, выполненный из нескольких слоев гофрированного листового материала.

Кожухотрубчатый теплообменный аппарат содержит кожух 1 с трубным пучком 2, камеру 3 и нижнюю камеру 4. На кожухе 1 имеются штуцер 5 для ввода теплоносителя 4 и штуцер 6 для вывода теплоносителя в межтрубное пространство. На камере 3 имеются штуцер 7 для ввода теплоносителя, на камере 4 штуцер 8 для вывода теплоносителя из трубного пространства. В зазоре между трубным пучком 2 и кожухом аппарата 1 расположен наполнитель 9. На фиг. 2 изображен наполнитель, состоящий из чередующихся слоев объемной сетки 11 и малопроницаемого материала 12. Первый слой объемной сетки 11 прилегает к теплообменной трубе 10 трубного пучка 2. На фиг. 3 изображен наполнитель, выполненный из нескольких слоев гофрированного листового материала 13. То, что в кожухотрубчатом теплообменном аппарате в зазоре между трубным пучком 2 и кожухом 1 расположен наполнитель 9, приводит к тому, что затрудняется или полностью прекращается движение теплоносителя в зазоре между трубным пучком 2 и кожухом 1 аппарата. При этом повышается скорость движения теплоносителя в трубном пучке 2, увеличивается коэффициент теплоотдачи и растет эффективность теплообмена. Теплообменные трубы 10 в трубном пучке 2 работают в близких условиях, снижается разность температур труб, и уменьшаются связанные с этим дополнительные напряжения. Вариант наполнителя 2, выполненного из чередующихся слоев объемной сетки 11, и малопроницаемого материала 12, и вариант наполнителя 2, выполненного из нескольких слоев гофрированного листового материала 13, обладают малым весом, хорошо гнутся. При заполнении аппарата жидким теплоносителем, из таких наполнителей 2 легко удаляется воздух, а при опорожнении аппарата в них не задерживается жидкость, что облегчает пропарку аппарата при подготовке к ремонту. Слой объемной сетки 11, примыкающий к теплообменным трубам 10, обеспечивает хорошее обтекание труб теплоносителем, а малопроницаемый материал 12 препятствует проникновению теплоносителя в следующие слои наполнителя 2. Хорошее обтекание теплообменных труб 10 и невозможность проникновения теплоносителя в следующие слои обеспечивается и в случае использования наполнителя 2 из гофрированного листового материала 13.

Похожие патенты RU2693804C1

название год авторы номер документа
Вертикальный трубчатый теплообменник с псевдоожиженным слоем сферических частиц 2020
  • Бальчугов Алексей Валерьевич
  • Бадеников Артем Викторович
  • Кузора Игорь Евгеньевич
RU2740376C1
ОГРАНИЧИТЕЛЬ ПЕРЕТЕЧЕК ТЕПЛОНОСИТЕЛЯ МЕЖДУ ТРУБНЫМ ПУЧКОМ И КОЖУХОМ ТЕПЛООБМЕННИКА 2005
  • Тумаков Алексей Григорьевич
  • Тумаков Евгений Алексеевич
  • Кравцов Александр Викторович
  • Рязанов Станислав Васильевич
RU2294505C1
ВЕРТИКАЛЬНЫЙ КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННЫЙ АППАРАТ С КОНДЕНСАЦИЕЙ ПАРОВ В МЕЖТРУБНОМ ПРОСТРАНСТВЕ 2015
  • Насибуллин Рустям Исламович
RU2594449C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2008
  • Наумов Александр Лаврентьевич
  • Мирзоян Гамлет Ашотович
  • Сотников Виктор Михайлович
RU2391613C1
Вертикальный кожухотрубчатый теплообменник 2018
  • Шершевский Александр Геннадьевич
  • Болитэр Валерий Аркадьевич
  • Султанов Юрий Радикович
  • Штырляев Илья Евгеньевич
RU2697213C1
ТЕПЛООБМЕННЫЙ АППАРАТ (ВАРИАНТЫ) 2007
  • Низамиев Лут Бурганович
  • Низамиев Ильнур Лутович
  • Гуреев Виктор Михайлович
  • Гортышов Юрий Федорович
RU2372572C2
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2021
  • Терентьев Сергей Леонидович
  • Рубцов Дмитрий Викторович
RU2770086C1
ВЕРТИКАЛЬНЫЙ КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК 2020
  • Клыков Михаил Васильевич
  • Алушкина Татьяна Валентиновна
RU2749474C1
ТЕПЛООБМЕННИК 2006
  • Тумаков Алексей Григорьевич
RU2328682C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2011
  • Анисин Андрей Александрович
  • Анисин Александр Константинович
RU2489664C1

Иллюстрации к изобретению RU 2 693 804 C1

Реферат патента 2019 года Кожухотрубчатый теплообменный аппарат

Изобретение относится к теплообменным аппаратам и может быть использовано в химической, нефтехимической и других отраслях промышленности. Предложен кожухотрубчатый теплообменный аппарат с трубным пучком, размещенным в кожухе, в котором в зазоре между трубным пучком и кожухом аппарата расположен наполнитель, выполненный из чередующихся слоев объемной сетки и малопроницаемого материала или из нескольких слоев гофрированного листового материала. Изобретение обеспечивает повышение эффективности теплообмена в кожухотрубчатых теплообменных аппаратах и повышение надежности теплообменных аппаратов. 3 ил.

Формула изобретения RU 2 693 804 C1

Кожухотрубчатый теплообменный аппарат с трубным пучком, размещенным в кожухе, в котором в зазоре между трубным пучком и кожухом аппарата расположен наполнитель, отличающийся тем, что наполнитель выполнен из чередующихся слоев объемной сетки и малопроницаемого материала или из нескольких слоев гофрированного листового материала.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693804C1

JPH 01300192 A, 04.12.1989
US 2006090880 A1, 04.05.2006
ПРИСПОСОБЛЕНИЕ ДЛЯ УСТАНОВКИ, ЗАКРЕПЛЕНИЯ И НАТЯЖЕНИЯ ПИЛ В ЛЕСОПИЛЬНОЙ РАМЕ 1927
  • Новоженов Ф.Н.
SU16394A1
КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК 2001
  • Сафин Ришат Рафилович
  • Рогачев Сергей Григорьевич
  • Сюняев Рустэм Загидуллович
  • Сафиев Олег Ганиятович
  • Сафиева Равиля Загидулловна
RU2282808C2

RU 2 693 804 C1

Авторы

Насибуллин Рустям Исламович

Даты

2019-07-04Публикация

2016-07-21Подача