Изобретение относится к устройствам, используемым в газовой промышленности, в частности для подачи газа на системы телеуправления, телеизмерения крановых узлов, расположенных в условиях подвижного грунта.
Известен способ подачи газа от стояков отбора импульсного газа до исполнительных (измерительных) устройств, заключающийся в жестком (сварном и резьбовом) соединении устройств стальной металлической трубкой. Данный способ подачи импульсного газа широко используется в газовой промышленности и является «классическим» проектным решением подачи газа к датчикам измерения давления, манометрам, устройствам управления трубопроводной арматурой [1], [2].
Недостатком данного способа является нарушение герметичности импульсных металлических трубок, резьбовых, сварных соединений в результате их изгиба и последующего излома, возникающих вследствие просадки трубопровода и трубопроводной арматуры, расположенных в условиях заболоченной местности и подвижного грунта.
Известен способ компенсации деформационных отклонений импульсных трубок на объектах, где присутствует возможность нарушения их целостности – применение сильфонных компенсаторов [3].
Недостатками данной конструкции является сложность ее изготовления и ограниченная подвижность вследствие недостаточного хода смещения сильфонных элементов.
Так же известен способ, рекомендованный проектными институтами ПАО «ВНИПИгаздобыча» и ПАО «Институт ЮЖНИИГИПРОГАЗ», заключающийся в изменении формы стальной импульсной линии, идущей от стояка отбора импульсного газа до исполнительного (измерительного) устройства с прямолинейной на волновую.
Данный вид компенсации деформационных сдвигов хоть и является простым в реализации и менее затратным, но не предотвращает нарушения герметичности импульсных линий из-за долгосрочных статических и усталостных повреждений применяемого материала и самих резьбовых соединений.
Задачей изобретения является повышение экологической и промышленной безопасности за счет предотвращения утечек газа на импульсных линиях трубопроводной арматуры, расположенной в условиях подвижного грунта и подверженной механической деформации.
Технический результат – создание герметичного соединения импульсной линии от источника до потребителя импульсного газа.
Поставленная задача решается, а технический результат достигается путем выполнения импульсной обвязки трубопроводной арматуры посредством применения гибкого рукава высокого давления, изготовленного из многослойного термопластикого рукава и смонтирована с учетом присутствия дополнительного запаса по длине (провиса) для требуемого свободного хода в трех направлениях.
На фиг.1 представлена схема импульсной обвязки трубопроводной арматуры для осуществления телеуправления на крановых узлах, расположенных в условиях подвижного грунта.
Подключение стояка отбора импульсного газа 1 с фильтром осушителем крана 2 осуществляется с использованием многослойного термопластикого рукава высокого давления 3 имеющего по краям соединительные фитинги 4.
Монтаж гибкого рукава высокого давления 3 производится с учетом присутствия дополнительного запаса по длине (провиса) для требуемого свободного хода в трех направлениях. При возникновении подвижек грунта и просадке трубопроводной арматуры, ведущие к изменению взаимного расположения стояка отбора импульсного газа 1 и колонны крана 5, сохраняется целостность гибкого рукава высокого давления 3 и резьбовых соединений фитингов 4. Предложенный вариант подключения источника и потребителя импульсного газа позволяет избежать возникновения утечек газа и сократить количество газоопасных и огневых работ.
Данный вид соединения применим при монтаже импульсной обвязки на крановых узлах, где присутствует пространственная динамика в расположении источника и потребителя импульсного газа.
Длину линии для соединения источника и потребителя импульсного газа, возможно изменять путем последовательного соединения рукавов.
Совокупность заявленных существенных отличительных признаков является нам неизвестной из патентной и научно-технической информации и в соответствии с этим является “Новой”.
Список источников:
1. 4377.2.Р.03.МГ.6-7(7-8).000.Л1.000 Система магистральных газопроводов Бованенково-Ухта Линейная часть 1-я нитка.
ОАО «ВНИПИгаздобыча»;
2. 07093.1-08.01-307.01 Линейная часть 1-я нитка. «Система магистральных газопроводов Бованенково-Ухта» МТ1 ПО-З «Южниигипрогаз»;
3. Деформации технологических трубопроводов и оборудования нефтегазовых сооружений в процессе эксплуатации и методы их уменьшения // Молодой ученый — 2016 — №8 — С. 168-170 Авлиякулов Н. Н., Бакоев Б. Б., Хасанов Ж. О.
название | год | авторы | номер документа |
---|---|---|---|
Байпасная и импульсная обвязки линейных кранов в составе крановых узлов многониточных магистральных газопроводов, проложенных в одном технологическом коридоре | 2021 |
|
RU2777810C1 |
Способ вытеснения газовоздушной смеси через стояки отбора газа и устройство для его осуществления | 2021 |
|
RU2796731C1 |
Способ подачи топливного газа на газоперекачивающие агрегаты | 2023 |
|
RU2810310C1 |
СПОСОБ ПРЕДУПРЕЖДЕНИЯ НАГРЕВА ЭЛЕМЕНТОВ ТРУБНОЙ ОБВЯЗКИ КРАНОВОГО УЗЛА ПРИ ЗАПОЛНЕНИИ УЧАСТКОВ ГАЗОПРОВОДОВ | 2014 |
|
RU2577896C1 |
СПОСОБ ОХЛАЖДЕНИЯ ПРИРОДНОГО ГАЗА | 2023 |
|
RU2814145C1 |
СПОСОБ ЗАПРАВКИ БАЛЛОНОВ ИЛИ СОСУДОВ ТРАНСПОРТНЫХ СРЕДСТВ, ПЕРЕДВИЖНЫХ ГАЗОВОЗОВ И ГАЗОЗАПРАВЩИКОВ КОМПРИМИРОВАННЫМ ПРИРОДНЫМ ГАЗОМ | 2002 |
|
RU2211996C1 |
Способ откачки природного газа из отключенного участка газопровода | 2022 |
|
RU2785793C1 |
Система и способ откачки газа из трубопроводной обвязки компрессоров газоперекачивающих агрегатов | 2020 |
|
RU2750223C1 |
СПОСОБ ОТБОРА ПРИРОДНОГО ГАЗА ИЗ ОТКЛЮЧЕННОГО УЧАСТКА МАГИСТРАЛЬНОГО ГАЗОПРОВОДА В МНОГОНИТОЧНОЙ СИСТЕМЕ (Варианты) И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (Варианты) | 2016 |
|
RU2619669C1 |
СПОСОБ ПРОДУВКИ УЧАСТКА ГАЗОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2018 |
|
RU2741178C2 |
Изобретение относится к способам, используемым в газовой промышленности при монтаже импульсных линий на участках газопровода, проложенного в условиях подвижного грунта, заболоченной местности при наличии динамики подвижек грунта и, как следствие, отклонении (от проектных отметок) стояков отбора импульсного газа с возможным появлением изломов металлических трубок (резьбовых соединений) и образованием утечек газа. Сущность изобретения заключается в том, что подведение импульсного газа в требуемые места подачи газа выполнено не стальными трубками, а посредством гибких рукавов высокого давления из многослойного термопластикого рукава и смонтировано с учетом присутствия дополнительного запаса по длине (провиса) с возможностью свободного хода в трех направлениях. 1 ил.
Способ выполнения импульсной обвязки трубопроводной арматуры на крановых узлах, расположенных в условиях заболоченной местности и подвижного грунта, характеризующийся тем, что применяют гибкий рукав высокого давления из многослойного термопластикого рукава и монтируют последний с учетом присутствия дополнительного запаса по длине с возможностью свободного хода в трех направлениях.
Ящик для хранения ценностей | 1935 |
|
SU45119A1 |
РАСШИРЯЕМЫЙ ПОЛИМЕРНЫЙ РУКАВ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ | 2012 |
|
RU2548302C2 |
Лоток для сброса шуги | 1939 |
|
SU61007A1 |
Предохранитель к клавишному диску батареи ткацкого станка системы Нортроп | 1932 |
|
SU29803A1 |
ГИБКИЙ РУКАВ ВЫСОКОГО ДАВЛЕНИЯ | 2012 |
|
RU2506485C1 |
Электронно-лучевая лампа | 1940 |
|
SU59769A1 |
RU 2006134781 А, 10.04.2008. |
Авторы
Даты
2019-07-08—Публикация
2018-05-17—Подача