АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ Российский патент 2019 года по МПК G08B17/00 

Описание патента на изобретение RU2696550C1

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов тревоги на удаленный пункт контроля.

Известны автономные сигнально-пусковые системы пожаротушения (авт. свид. СССР №№1.261.676 1.277.159; патенты РФ №№2.022.250, 2.024.064, 2.115.451, 2.138.856, 2.170.951, 2.175.779, 2.234.735, 2.242.921, 2.254.614,. 2.275.688, 2.344,859, 2.355.037, 2.434.297, 2.520.429; патенты США №№3.786.461, 4.661.320; патент Великобритании №2.324.398; патенты ЕР №№0.360.126, 0.657.728 и др.)

Из известных систем наиболее близкой к предлагаемой является «Автономная сигнально-пусковая система пожаротушения» (патент РФ №2.434.297, G08B 17/10.2012), которая и выбрана в качестве прототипа.

Приемник известной системы построен по супергетеродинной схеме, в которой одно и то же значение промежуточной частоты ωпр может быть получено в результате приема сигналов на двух частотах ωс и ωз, т.е

Следовательно, если частоту настройки ωс принять за основной канал приема, то наряду с ним будет иметь место зеркальный канал приема, частоты ωз которого отличается от частоты ωс на 2 ωпр и расположено симметрично (зеркально) относительно частоты ωг гетеродина (фиг.7). Преобразование по зеркальному каналу приема происходит с тем же коэффициентом преобразования Кпр, что и по основному каналу приема. Поэтому он наиболее существенно влияет на избирательность и помехоустойчивость приемника.

Кроме зеркального существуют и другие дополнительные (комбинационные) каналы приема. В общем виде любой комбинационный канал приема имеет место при выполнении условия

где ωki частота i-гo комбинационного канала приема;

m, n, i - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первой гармоники частоты сигнала с гармониками частоты гетеродина малого порядка (второй, третий и т.д.), так как чувствительность приема по этим каналам близка к чувствительности основного канала. Так двум комбинационным каналам при m=1 и m=2 соответствуют частоты:

где 2 ωг - вторая гармоника частоты гетеродина.

Наличие ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам приводит к снижению помехоустойчивости и избирательности приемника.

Демодулятор сложных Фмн сигналов, содержащий линию задержки 44 и фазовый детектор 43, реализует метод относительный фазовой манипуляции (ОФМн), в котором опорным напряжением для последующей посылки служит предыдущая элементарная посылка. При этом время задержки τз линии задержки 44 выбирается равной длительности τэ элементарных посылок (τзэ).

Следовательно, для технической реализации указанного демодулятора сложных Фмн сигналов необходимы априорные сведения длительности тэ элементарных посылок. При этом теряется информация о первой элементарной посылке. Кроме того, демодулятор имеет низкую помехоустойчивость и склонность к образованию парных ошибок, т.е. образование одной ошибки влечет за собой и образование второй ошибки.

Указанные факторы приводят также к снижению помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией.

Технической задачей изобретения является повышение помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией путем устранения ложных сигналов (помех), принимаемых по дополнительным каналам, и парных ошибок при демодуляции указанных сигналов.

Поставленная задача решается тем, что автономная сигнально-пусковая система пожаротушения, содержащая, в соответствии с ближайшим аналогом, последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с исполнительным устройством через нормально разомкнутый контакт и дополнительно соединено с исполнительным устройством через нормально разомкнутый контакт, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпусе, тепловой пускатель выполнен в виде подпружиненного штока, установленного с возможностью поступательного перемещения и взаимодействия с пиротехническим активатором источника тока, причем один из концевых участков подпружиненного штока расположен с возможностью выступания из корпуса и снабжен фиксатором, выполненным из материала с термомеханической памятью формы, источник тока включает оболочку с размещенной в ней с возможностью контакта с пиротехническим активатором твердотельной шашкой из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа, сигнальное устройство выполнено в виде передатчика сигнала на удаленный приемник, при этом передатчик сигналов выполнен в виде последовательно включенных задающего генератора, n - отводной линии задержки, фазоинверторов, включенных в m - отводы n - отводной линии задержки, сумматора, (n+1) - ый вход которого соединен с выходом задающего генератора, усилителя мощности и передающей антенны, а приемник выполнен в виде фазового детектора, блока регистрации и последовательно включенных приемной антенны и усилителя высокой частоты и смесителя, второй вход которого соединен с первым выходом гетеродина, отличается от ближайшего аналога тем, что приемник снабжен двумя фильтрами нижних частот, двумя перемножителями, фазовращателем на 90°, узкополосным фильтром, измерителем несущей частоты и измерителем доплеровской частоты, причем к выходу смесителя последовательно подключены первый фильтр нижних частот, первый перемножитель, второй вход которого соединен с выходом усилителя высокой частоты, и фазовый детектор, второй вход которого через фазовращатель на 90° соединен с вторым выходом гетеродина, а выход подключен к управляющему входу гетеродина, к выходу первого перемножителя последовательно подключены узкополосный фильтр и измеритель несущий частоты, выход которого соединен с вторым входом блока регистрации, к выходу узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с вторым выходом гетеродина, второй фильтр нижних частот и измеритель доплеровской частоты, выход которого соединен с третьим входом блока регистрации, частота генератора ωг выбрана равной частоте (ωс±Ωд) принимаемого сигнала

и указанное равенство поддерживается автоматически.

Структурная схема автономной сигнально-пусковой системы пожаротушения представлена на фиг. 1. График изменения напряжения на выходных контактах источника тока показан на фиг. 2. Конструктивно объединенные в едином корпусе источник тока с пиротехническим активатором и тепловым пускателем электрического действия изображены на фиг. 3. Конструктивно объединенные в едином корпусе источник тока с пиротехническим активатором и тепловым пускателем ударного действия изображены на фиг. 4. Структурная схема передатчика представлена на фиг. 5. Структурная схема приемника представлена на фиг. 6. Частотные диаграммы, иллюстрирующие образование дополнительных каналов приема, изображены на фиг. 7.

Автономная сигнально-пусковая система пожаротушения содержит последовательно соединенные тепловой пускатель 1, источник тока 2 с пиротехническим активатором 3 и реле времени 4, которое соединено с сигнальным устройством 5 через нормально замкнутый контакт и дополнительно соединено с исполнительным устройством 6 через нормально разомкнутый контакт.

Тепловой пускатель 1 и источник тока 2 с пиротехническим активатором 3 конструктивно объединены и заключены в едином корпусе 7, выполненном из электроизоляционного материала. В качестве электроизоляционного (не электропроводного) и немагнитного материала при изготовлении элементов системы могут быть использованы пластические материалы, материалы на основе стекло - или органоволокна. Тепловой пускатель 1 выполнен в виде цилиндрического штока 8, установленного в корпусе 7. Шток 8 оснащен приводом его поступательного перемещения, который представляет собой пружину 9 сжатия, установленную коаксиально на штоке 8 в его средней части. Концевой участок 10 подпружиненного штока 8 расположен с возможностью выступания из корпуса 7 и имеют фигурную проточку для взаимодействия с термочувствительным фиксатором 11, выполненным в форме скобы диаметром около 20 мм из материала с термомеханической памятью формы, например, никелида титана.

Тепловой пускатель 1 имеет возможность взаимодействовать с пиротехническим активатором 3 источника тока 2 двумя различными способами, отличающимися их конструктивными воплощениями.

Тепловой пускатель 1 электрического действия, изображенный на фиг. 3, снабжен соленоидом 12 с центральным осевым каналом 13, выводы 14 которого электрически соединены с пиротехническим активатором 3. При этом пиротехнический активатор 3 выполнен в виде мостика накаливания 15, электрически соединенного с выводами 14, и нанесенной на него навеской инициирующего вещества 16. Кроме этого, второй концевой участок 17 подпружиненного штока 8 намагничен (на чертежах соответствующие полюсы постоянного магнита обозначены буквами S и N) и установлен с возможностью перемещения внутри центрального осевого канала 13 соленоида 12.

Тепловой пускатель 1 ударного действия, изображенный на фиг. 4, характеризуется тем, что второй концевой участок 17 его подпружиненного штока 8, обращенный в сторону пиротехнического активатора 3, снабжен коническим бойком 18. При этом пиротехнический активатор 3 выполнен в виде воспламенителя и навески инициирующего вещества 16 и капсюля 19. Источник тока 2 является устройством питания постоянной готовности на основе теплового химического источника тока резервного типа, который представляет собой конструкцию в герметической оболочке 20 с твердотельной шашкой 21 из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа. При этом твердотельные шашки 21 непосредственно контактируют с навеской инициирующего вещества 16 пиротехнического активатора 3, который также, преимущественно размещен в герметической оболочке 20. Источник тока 2 имеет электрические выводы 22, которые нормально соединены с входными контактами реле времени 4.

Реле времени 4 представляет собой электронный двухпозиционный временной переключатель, который через нормально замкнутый выходной контакт электрически соединен с сигнальным устройством 5 и одновременно через нормально разомкнутый выходной контакт электрически соединен с исполнительным устройством 6. Исполнительное устройство 6 представляет собой, преимущественно, генератор огнетушащего аэрозоля с электрическим средством запуска, например, пиропатроном, который собственно и подключен к нормально разомкнутому контакту реле времени 4. Сигнальное устройство 5 представляет собой, преимущественно, передатчик радиосигнала на удаленный приемник.

Передатчик содержит последовательно включенные задающий генератор 23, n - отводную линию задержки 24.i(i=1, 2,…, n), фазоинвертора 25.j(j=1, 2,…, m), включенный в m- отводы n - отводной линии задержки 24.i, сумматор 26, (n+1) - ый вход которого соединен с выходом задающего генератора 23, усилитель 27 мощности и передающую антенну 28.

Приемник содержит последовательно включенные приемную антенну 29, усилитель 30 высокой частоты, смеситель 31, второй вход которого соединен первым выходом гетеродина 33, первый фильтр 32 нижних частот, первый перемножитель 35, второй вход которого соединен с выходом усилителя 30 высокой частоты и фазовый детектор 43, второй вход которого через фазовращатель 36 на 90° соединен с вторым выходом гетеродина 33, а выход подключен к управляющему входу гетеродина 33.

К выходу первого перемножителя 35 последовательно подключен узкополосный фильтр 37 и измеритель 38 несущей частоты, выход которого соединен с вторым выходом блока 45 регистрации, первый вход которого соединен с выходом первого фильтра 32 нижних частот.К выходу узкополосного фильтра 37 последовательно подключены второй перемножитель 39, второй вход которого соединен с вторым выходом гетеродина 33, второй фильтр 40 нижних частот и измеритель 41 доплеровской частоты, выход которого соединен с третьим входом блока 45 регистрации. Первый перемножитель 35, фазовращатель 36 на 90° и фазовый детектор 43 образуют систему фазовой автоматической подстройки частоты (ФАПЧ) 34 гетеродина 33.

Автономная сигнально-пусковая система пожаротушения функционирует следующим образом.

Система эффективна при использовании ее, преимущественно, на удаленных, труднодоступных и редко посещаемых объектах. Основные элементы системы доставляются на объект в собранном виде и во взведенном положении, устанавливаются стационарно в месте наиболее вероятного возникновения пожара. После монтажа системы пожаротушения снимаются все предохранители, в том числе и со штока 8 (на чертеже не показан), и она переводится в дежурный режим.

При возникновении пожара и повышении температуры в зоне расположения термочувствительного фиксатора 11 до порога срабатывания (72°С) в его материале происходит мартенситное превращение, сопровождающееся восстановлением предварительно заданной формы скобы, последняя разжимается, восстанавливая свою форму, и высвобождает концевой участок 10 штока 8. Шток 8 под воздействием пружины 9 привода (его поступательного движения) начинает движение вниз. Вместе со штоком 8 перемещается и его второй концевой участок 17. Далее возможна реализация схемы пиротехнического активатора 3 с тепловым пускателем 1 электрического действия или пиротехнического активатора 3 с тепловым пускателем 1 ударного действия.

В первом случае подпружиненный шток 8 взаимодействует с пиротехническим активатором 3 посредством намагниченного второго концевого участка 17, который перемещается внутрь центрального осевого канала 13 соленоида 12 и вырабатывает импульс тока, передающийся через электрические выводы 14 на мостик накаливания 15 пиротехнического активатора 3. Необходимая величина электрического импульса составляет 0,5-1,0 А, а длительность - 1-10 мс.

Во втором случае подпружиненный шток 8 взаимодействует с пиротехническим активатором 3 посредством конического бойка 18, который ударяет по капсулю 19.

В обоих случаях происходит воспламенение навески инициирующего вещества 16, которое за короткое время расплавляет твердосолевую электрохимическую композицию твердотельной шашки и переводит источник тока 2 в состояние генерирования тока заданной величины.

Как показывает график (фиг. 2), короткое время активации (t0≤1с) позволяет использовать источник тока 2 в средствах и устройствах с малым временем приведения в рабочее состояние. В течении периода времени t1 происходит включение и функционирование сигнального устройства 5. Длительность периода времени t1 обеспечивается реле времени 4, задается при монтаже системы пожаротушения и зависит от регламента и плана аварийных действий на охраняемом объекте. В течение указанного периода времени обязательно сохраняется нормально замкнутый электрический контакт выхода реле времени 4 с сигнальным устройством 5, которое обеспечивает передачу радиосигнала на удаленный приемник.

Для этого задающим генератором 23 формируется радиоимпульс

где Vc, ωс, ϕс, τэ - амплитуда, несущая частота, начальная фаза и длительность радиоимпульса.

Сформированный радиоимпульс с выхода задающего генератора 23 поступает на вход многоотводной линии задержки 24.i (i=1, 2,…, n) и на (n+1) - ый вход сумматора 26. В многоотводной линии задержки 24.i время задержки между ближайшими соседними отводами равно длительности радиоимпульса τэзiэ, i=1, 2…n). В некоторых отводах линии задержки включены фазоинверторы 25.j (j=1, 2,…, m), обеспечивающие на своих выходах поворот фазы на 180° (в соответствии с идентификационным кодом M(t) объекта пожарной безопасности). На выходе сумматора 26 формируется сложный сигнал с фазовой манипуляцией (ФМн) в виде алгебраической суммы радиоимпульсов со всех отводов линии задержки 24.i (i=1, 2,…, n) и с выхода задающего генератора 23

где ϕк(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем ϕк(t)=const при кτэ<t<(к+1) и может изменяться скачком при t=кτэ, то есть на границах между элементарными посылками (радиоимпульсами) (к=1,2,…, n);

τэ, n - длительность и количество элементарных посылок (радиоимпульсов), из которых составлен сигнал длительностью Тссэ⋅n).

Данный сигнал после усиления в усилителе 27 мощности поступает в передающую антенну 28, излучается ею в эфир, улавливается приемной антенной 29, установленной на пункте контроля,

где ± Ωд - доплеровское смещение частоты и через усилитель 30 высокой частоты поступает на первые входы смесителя 31 и первого перемножителя 35. На второй вход смесителя 31 подается напряжения гетеродина 33.

Причем частота ωг гетеродина 33 выбирается равной частота (ωс±ΩД) принимаемого

На выходе смесителя 31 образуются следующие напряжения:

где Vн1=1/2 Vc× Vr

Фильтром 32 нижних частот выделяется низкочастотное напряжение (напряжение нулевой частоты)

пропорциональное модулирующийся коду M(t), которое фиксируется блоком 45 регистрации.

Следует отметить, что выбор частоты ωг гетеродина 33 равной частоте

с±Ωд) принимаемого ФМн сигнала ωг=(ωс±Ωд) обеспечивает совмещение двух процедур: преобразование принимаемого ФМн сигнала на нулевую частоту и выделение низкочастотного напряжения UH(t), пропорционального модулирующему коду M(t), т.е. синхронное детектирование принимаемого ФМн сигнала с помощью смесителя 31, фильтра 32 нижних частот и гетеродина 33.

Такая схемная конструкция позволяет избавиться от дополнительных каналов приема (зеркального на частоте ωз, первого ωк1 и второго ωк2 комбинационных каналов) и парных ошибок при демодуляции принимаемого ФМн сигнала.

Так как частота ωс принимаемого ФМн сигнала может изменяться под воздействием различных дестабилизирующих факторов, в том числе и эффекта Доплера, то для выполнения и поддержания равновесия

используется система ФАПЧ 34, состоящая из перемножителя 35, фазовращателя 36 на 90° и фазового детектора 43.

На выходе перемножителя 35 образуется гармоническое напряжение

где

которое выделяется узкополосным фильтром 37 и поступает на вход измерителя 38 несущей частоты принимаемого сигнала и на первый вход перемножителя 39, на второй вход которого подается напряжение Ur(t) гетеродина 33. Измеритель 38 обеспечивает измерение несущей частоты (ωс±Ωд) принимаемого ФМн сигнала, которое фиксируется на втором входе блока 45 регистрации. На выходе перемножителя 39 образуется низкочастотное напряжение

где

которое выделяется фильтром 40 низких частот и поступает на вход измерителя 41 доплеровской частоты. Измеренное значение доплеровской частоты ±Ω. фиксируется на третьем входе блока 45 регистрации.

Если доплеровская частота равна нулю (Ωд=0), то объекты пожарной безопасности и диспетчерские пункты контроля находятся в статическом положении.

Если объект пожарной безопасности и диспетчерский пункт контроля сближаются, то об этом свидетельствует знак «+», а величина доплеровской частоты +Ω, свидетельствует о скорости их сближения.

Если объект пожарной безопасности и диспетчерский пункт контроля удаляются друг от друга, то об этом свидетельствует знак «-», а величина доплеровской частот -Ωд свидетельствует о скорости их удаления друг от друга.

Таким образом, предлагаемая система по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией. Это достигается за счет устранения ложных сигналов (по мех), принимаемых по дополнительным каналам, и парных ошибок при демодуляции указанных сигналов.

Похожие патенты RU2696550C1

название год авторы номер документа
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2017
  • Дикарев Виктор Иванович
  • Коновалов Владимир Борисович
  • Березин Борис Викторович
  • Казаков Николай Петрович
  • Аврутова Ирина Николаевна
RU2641886C1
Автономная сигнально-пусковая система пожаротушения 2021
  • Дикарев Виктор Иванович
  • Кащеев Роман Леонидович
  • Гавкалюк Богдан Васильевич
  • Бардулин Николай Евгеньевич
  • Бирюков Александр Николаевич
  • Борисов Алексей Александрович
  • Савчук Александр Дмитриевич
  • Бережкова Людмила Ивановна
  • Рузманов Максим Дмитриевич
  • Лебёдкин Анатолий Петрович
  • Савчук Николай Александрович
  • Пилипенко Василий Юрьевич
RU2771441C1
СИСТЕМА ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ КОНТЕЙНЕРНОЙ БАЗОВОЙ НЕСУЩЕЙ КОНСТРУКЦИИ 2014
  • Мельников Владимир Александрович
  • Ефимов Владимир Васильевич
  • Дикарев Виктор Иванович
RU2565492C1
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2013
  • Михайлов Александр Николаевич
  • Арбузников Сергей Викторович
  • Михайлов Евгений Александрович
  • Дикарев Виктор Иванович
RU2520429C1
СПОСОБ СОВМЕЩЕННОЙ РАДИОСВЯЗИ И РАДИОНАВИГАЦИИ И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ, ДЛЯ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА 2009
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Михайлов Виктор Анатольевич
  • Гянджаева Севда Исмаил Кызы
RU2385246C1
ЗАПРОСНЫЙ СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2309431C1
СПОСОБ РАННЕГО ОБНАРУЖЕНИЯ ПОЖАРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2018
  • Дикарев Виктор Иванович
  • Казаков Николай Петрович
  • Бардулин Евгений Николаевич
  • Бардулина Оксана Евгеньевна
RU2703366C1
ЗАПРОСНЫЙ СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
RU2389040C1
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Михайлов Александр Николаевич
  • Петрушин Владимир Николаевич
  • Иванов Николай Николаевич
RU2434297C1
ЗАПРОСНЫЙ СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ 2009
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
RU2429503C2

Иллюстрации к изобретению RU 2 696 550 C1

Реферат патента 2019 года АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ

Изобретение относится к автоматическим противопожарным системам. Технический результат заключается в повышении помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией. Автономная сигнально-пусковая система пожаротушения включает последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с сигнальным устройством и соединено с исполнительным устройством, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпус, и приемник снабжен двумя фильтрами нижних частот, двумя перемножителями, фазовращателем на 90°, узкополосным фильтром, измерителем несущей частоты и измерителем доплеровской частоты, и к выходу смесителя последовательно подключены первый фильтр, первый перемножитель и фазовый детектор, второй вход которого через фазовращатель на 90° соединен со вторым выходом гетеродина, а выход подключен к управляющему входу гетеродина, к выходу первого перемножителя подключены узкополосный фильтр и измеритель несущей частоты, частота гетеродина ωг выбрана равной частоте (ωc±Ωд) принимаемого сигнала [ωг=(ωс±Ωд)] и указанное равенство поддерживается автоматически. 7 ил.

Формула изобретения RU 2 696 550 C1

Автономная сигнально-пусковая система пожаротушения, содержащая последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с сигнальным устройством через нормально разомкнутый контакт и дополнительно соединено с исполнительным устройством через нормально разомкнутый контакт, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпус, тепловой пускатель выполнен в виде подпружиненного штока, установленного с возможностью поступательного перемещения и взаимодействия с пиротехническим активатором источника тока, причем один из концевых участков подпружиненного штока расположен с возможностью выступания из корпуса и снабжен фиксатором, выполненным из материала с термомеханической памятью формы, источник тока включает оболочку с размещенной в ней с возможностью контакта с пиротехническим активатором твердотельной шашкой из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа, сигнальное устройство выполнено в виде передатчика сигнала на удаленный приемник, при этом передатчик сигнала выполнен в виде последовательно включенных задающего генератора, n-отводной линии задержки, фазоинверторов, включенных в m-отводы n-отводной линии задержки, сумматора, (n+1)-й вход которого соединен с выходом задающего генератора, усилителя мощности и передающей антенны, а приемник выполнен в виде фазового детектора, блока регистрации и последовательно включенных приемной антенны, усилителя высокой частоты и смесителя, второй вход которого соединен с первым выходом гетеродина, отличающаяся тем, что приемник снабжен двумя фильтрами нижних частот, двумя перемножителями, фазовращателем на 90°, узкополосным фильтром, измерителем несущей частоты и измерителем доплеровской частоты, причем к выходу смесителя последовательно подключены первый фильтр нижних частот, первый перемножитель, второй вход которого соединен с выходом усилителя высокой частоты, и фазовый детектор, второй вход которого через фазовращатель на 90° соединен со вторым выходом гетеродина, а выход подключен к управляющему входу гетеродина, к выходу первого перемножителя последовательно подключены узкополосный фильтр и измеритель несущей частоты, выход которого соединен со вторым входом блока регистрации, к выходу узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен со вторым выходом гетеродина, второй фильтр нижних частот и измеритель доплеровской частоты, выход которого соединен с третьим входом блока регистрации, частота гетеродина ωг выбрана равной частоте (ωc±Ωд) принимаемого сигнала [ωг=(ωс±Ωд)] и указанное равенство поддерживается автоматически.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696550C1

US 7978087 B2, 12.07.2011
US 9541501 B2, 10.01.2017
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2007
  • Архаров Олег Вадимович
  • Сороковиков Виктор Павлович
  • Сервули Александр Васильевич
RU2355037C2
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Михайлов Александр Николаевич
  • Петрушин Владимир Николаевич
  • Иванов Николай Николаевич
RU2434297C1

RU 2 696 550 C1

Авторы

Дикарев Виктор Иванович

Бычков Антон Вячеславович

Березин Борис Викторович

Казаков Николай Петрович

Танасюк Юрий Васильевич

Даты

2019-08-02Публикация

2018-02-27Подача