Способ получения теплоизоляционного материала на основе аэрогеля Российский патент 2019 года по МПК D04H13/00 B32B5/24 C04B38/00 D06M11/79 

Описание патента на изобретение RU2696638C1

Настоящее изобретение относится к технологиям с применением аэрогеля и может быть использовано для получения теплоизоляционных материалов широкого применения.

Известен композиционный материал на основе аэрогелей [US 6087407, D04H 13/00, 20.11.2007], который армирован высокого волокнистым ватином, преимущественно в сочетании с индивидуальными короткими случайно ориентированными микроволокнами и/или проводящими слоями.

Недостатком этого материала является относительно низкая термостойкость на воздухе при высоких тепловых нагрузках, а также недостаточная для многих применений гибкость.

Известен также теплоизоляционный материал на основе аэрогеля [RU 2310702, С2, D04H 13/00, С04В 38/00, 20.11.2007], содержащий аэрогель и армирующую структуру, выполненную волокнистым ватином, приготовленным из волокон с линейной плотностью волокон или нитей равной 10 и меньше или из волокон с диаметром от 0,1 до 100 мкм, который может быть сжат, по меньшей мере, на 65% своей толщины и после сжатия в течение 5 с возвращается в состояние с толщиной, составляющей, по меньшей мере, 75% своей исходной толщины и имеет плотность в диапазоне от около 0,001-0,26 г/см3.

Недостатками этого технического решения является относительно малая гибкость и низкая прочность, относительно большая толщина, а также чрезмерное спекание аэрогеля при воздействии теплоты и относительно высокая теплопроводность.

Известны также способы получения теплоизоляционного материала на основе аэрогеля.

В частности, известен способ получения изделий контролируемой формы из аэрогелей на основе многослойных углеродных нанотрубок [RU 2533493, С2, C09D 5/00, 20.11.2014], включающий нанесение на поверхность теплоизоляционного покрытия, содержащего в качестве смесевого наполнителя наполнитель на основе аэрогеля, покрытия, содержащего в качестве смесевого наполнителя смесь полых микросфер, различающихся между собой размерами в диапазоне от 3 до 500 мкм и насыпной плотностью в диапазоне от 50 до 700 кг/м3.

Недостатком способа является относительно высокая сложность.

Наиболее близким по технической сущности к предложенному является способ получения композиционного материала на основе аэрогеля с применением ватина для армирования [RU 2310702, С2, D04H 13/00, С04В 38/00, 20.11.2007], заключающийся в том, что, секцию (2'×3'×1/4'') полиэфирной изоляции типа Thinsulate® Lite Loft помещают в контейнер и перемешивают 1300 мл предварительно гидролизованного прекурсора диоксида кремния (Silbond Н-5) с 1700 мл 95% денатурата в течение 15 мин., после чего проводят гелеобразование полученного раствора путем медленного добавления HF (2% от объема всего раствора) при перемешивании с последующим заполнением полученной смесью полотна из ватина, предварительно помещенного в контейнер с последующей выдержкой в течение ночи в герметичной ванне заполненной этанолом при 50°С и сушкой с удалением спирта при помощи субкритической и сверхкритической СО2 экстракции в течение четырех дней.

Недостатком наиболее близкого технического решения является относительно узкая область применения, поскольку он используется для получения композиционного материала на основе ватина и конечный продукт по этому способу обладает относительно низкими теплоизоляционными свойствами и не обеспечивает относительно низкого коэффициента теплопроводности в широком диапазоне температур, улучшенных поглощающих свойств электромагнитного излучения в области ИК-спектра, повышенной механической прочности и гибкости, сниженной осыпаемости.

Задача, которая решается в изобретении, заключается в расширении области применения способа и расширении на этой основе арсенала технических средств, которые могут быть использованы для получения теплоизоляционных материалов на основе аэрогеля с улучшенными теплоизоляционными свойствами, в частности с относительно низким коэффициентом теплопроводности в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК-спектра, повышенной механической прочностью и гибкостью, сниженной осыпаемостью.

Требуемый технический результат заключается в расширении области применения способа и обеспечении возможности получения теплоизоляционных материалов на основе аэрогеля с улучшенными теплоизоляционными свойствами, в частности, с относительно низким коэффициентом теплопроводности в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК спектра, повышенной механической прочностью и гибкостью, сниженной осыпаемостью.

Поставленная задача решается, а требуемый технический результат достигается тем, что, в способе, согласно которому изготовляют упрочняющую структуру, в которую вводят аэрогель с последующей сушкой для получения целевого теплоизоляционного материала, согласно изобретению, армирующую структуру изготовляют в виде волокнистой подложки плотностью 0,001-0,1 г/см3 (при использовании подложки меньшей плотности, механическая прочность конечного материала будет недостаточной, а при превышении указанного предела коэффициент теплопроводности конечного материала будет выше, чем необходимо), которая состоит из волокон с диаметром 0,1-20 мкм (материал может быть получен с применением волокнистой подложки состоящей из смеси волокон малого и большого диаметра в рамках указанного предела, причем, такое сочетание позволяет с одной стороны улучшить механическую прочность конечного материала за счет волокон большого диаметра, а с другой -снизить осыпаемость за счет волокон малого диаметра, при этом, использование волокон меньшего, чем указано, диаметра не оказывает существенного действия на конечные свойства материала, но затрудняет их изготовление, а использование волокон большего диаметра приводит к ухудшению теплоизоляционных характеристик), для получения аэрогеля предварительно получают золь путем смешивания силанов (тетраэтоксисилан, тетраметоксисилан, метилтриметоксисилан, диметилдисилазан, триметилхлорсилан и др.,) с органическим растворителем и водным раствором кислоты (соляной, хлористой, хлорноватистой, плавиковой, азотной, серной кислот) с выдержкой мольного соотношения силан : органический растворитель : H2O : кислота, равным 2:(5-10):(2-8):(1-10)×10-3 (количеством органического растворителя на данной стадии предварительно задается конечная плотность аэрогеля, которая, в первую очередь, определяет теплоизоляционные свойства материала, именно в указанных пределах находится минимум значения коэффициента теплопроводности, количеством воды определяется ход химических реакций гелеобразования, причем, при использовании меньшего, чем указано, количества материал не может быть синтезирован, а использование большего, чем указано, количества не окажет дополнительного влияния на ход химических реакций, а остаточное количество непрореагировавшей воды затрудняет последующий процесс сушки, концентрация кислоты определяет структурные характеристики аэрогеля, которые также имеют значительное влияние на конечные теплоизоляционные свойства, при использовании меньшего, чем указано, значения необходимые химические реакции не будут протекать, а использование большего, чем указано, количество приведет к преждевременному гелеобразованию получаемого золя) и выдерживают в течение 24 часов, после чего в полученный на предыдущей стадии золь при перемешивании вводят дополнительное количество органического растворителя до достижения соотношения золя к органическому растворителю 1,2-2 (введение дополнительного органического растворителя необходимо для корректировки конечной плотности при сохранении полученных свойств золя, при увеличении соотношения последующее гелеобразование не будет происходить, а при его уменьшении не могут быть получены необходимые теплоизоляционные свойства) и вводят гелирующий агент - раствор основания (NH3 в виде аммиачной воды, гидроксид натрия, гидроксида калия, гидрокарбонат натрия) с выполнением мольного соотношения (C2H5O)4Si : основание, равного 1:(1-5)×10-2, и проводят выдержку для гелеобразования в течение 10-60 минут, а затем полученный аэрогель вводят в армирующую структуру путем их совместного центрифугирования при скорости вращения центрифуги 500-1500 об/мин в течение 10-60 мин (использование меньшего времени недостаточно для получения равномерной пропитки армирующей структуры или подложки, а большего времени нецелесообразно, так как после окончания гелеобразования нет необходимости в дальнейшем центрифугировании), а для окончательного получения целевого теплоизоляционного материала производят старение композиционного материала на основе аэрогеля армированного волокнистой структурой путем его помещения в растворитель на 24 часа, а затем производят его сверхкритическую сушку, для чего загружают в герметичную установку со сжиженным диоксидом углерода, внутри которой устанавливают и поддерживают давление 120-180 атм и температуру 40-100°С (минимальные значения параметров процесса определяются критической точкой смеси диоксида углерода и растворителя в котором был получен аэрогель, поэтому давление процесса должно быть не ниже 120 атм, а температура не ниже 40°С, тогда система будет гомогенна и сверхкритическая сушка может быть успешно проведена, при этом поддержание параметров выше указанных не влияет на интенсивность процесса сверхкритической сушки, но увеличивает энергозатраты) в течение 2-12 часов (указанное время зависит от размеров высушиваемого образца, времени меньше 2 часов не достаточно для получения материала необходимого качества, а времени больше 12 часов достаточно всех получаемых образцов), при этом, в герметичной установке со сжиженным диоксидом углерода используют в приточном режиме.

Предложенный способ получения теплоизоляционного материала на основе аэрогеля реализуется следующим образом.

Вначале получают упрочняющую структуру в виде волокнистой подложки плотностью 0,001-0,1 г/см3, которая состоит или из кремнеземных, или из стеклянных, или из базальтовых волокон заданного диаметра 0,1-20 мкм и отличается узким распределением волокон по диаметру. Волокнистая подложка имеет теплопроводность 0,020-0,025 Вт/(м⋅К). Применение указанной волокнистой подложки позволяет получать композиционный материал с предельно малым коэффициентом теплопроводности 0,010-0,015 Вт/(м⋅К). Применение волокон диаметром 0,1-20 мкм с узким распределением по диаметру позволяет, с одной стороны, снизить ее влияние на теплопроводность конечного материала, а, с другой стороны, повысить эффективность армирующего эффекта, значительно снизить осыпаемость аэрогеля.

Далее осуществляют операции получения аэрогеля, включающие получение золя (стадия гидролиза прекурсора), разбавление и введение гелирующего агента, пропитку волокнистой подложки, гелеобразование и «старение» материала, сверхкритическую сушку, упаковку.

Структура и физико-химические свойства аэрогелей напрямую зависят от условий проведения каждой стадии, от выбранных прекурсоров, растворителей и катализаторов.

Используемые прекурсоры: тетраэтоксисилан, метилтриметоксисилан, триметилхлорсилан, гексаметилдисилазан и некоторые другие кремнийорганические соединения.

Получение золя (стадия гидролиза прекурсора. Для получения аэрогелей на основе диоксида кремния из тетраэтоксисилана (ТЭОС) используется следующее мольное соотношение ТЭОС : органический растворитель : H2O : HCl : NH3=2:(5-10):(2-8):(1-10)×10-3:(1-5)×10-2. Последовательность получения золя следующая. Тетраэтоксисилан смешивают с органическим растворителем (этиловый, изопропиловый, метиловый спирты, этилацетат, ацетон, бутанон, гексан и пр.) и добавляют водный раствор соляной кислоты заданной концентрации. Затем полученную смесь перемешивают 10-15 минут оставляют на 24 часа при комнатной температуре.

В полученный на предыдущей стадии золь при перемешивании добавляют дополнительное количество органического растворителя до достижения заданного разбавления кратного 1,2-2. Полученную смесь перемешивают в течение 10-15 минут и вводят в нее гелирующий агент - раствор аммиака заданной концентрации так, чтобы выполнялось следующее мольное соотношение : ТЭОС : NH3=1:(1-5)×10-2. Время гелеобразование составляет 10-60 минут.

В аппарат с вращающейся емкостью (центрифуга) загружается рулон волокнистой подложки и смесь, приготовленная на предыдущей стадии. Задается необходимая скорость вращения емкости (500-1500 об/мин) и гелеобразование происходит в течение 10-60 минут.

Полученный на предыдущей стадии композиционный материал на основе аэрогеля, включенного в волокнистую подложку, загружают в специальную емкость для хранения, предварительно заполненную растворителем. Время хранения - не менее 24 часов.

После этого рулон полученного композиционного материала загружают в установку для сверхкритической сушки. Установка герметизируется и в нее подают сжиженный диоксид углерода, после чего с помощью насоса установки внутри аппарата устанавливается давление 120-180 атм, а с помощью нагревательной рубашки установки поддерживается заданная температура 40-100°С. Затем создается необходимый расход диоксида углерода и заданный режим поддерживается в течение 6-12 часов. После окончания необходимого времени давление в установке сбрасывается и стадия считается оконченной. Рулоны полученного теплоизоляционного материала герметично упаковываются в полимерную пленку и маркируются.

Проведенные испытания позволяют сделать вывод, что полученный теплоизоляционный материал на основе аэрогеля обладает улучшенными теплоизоляционными свойствами, в частности, с относительно низким коэффициентом теплопроводности 0,010-0,015 Вт/м-К в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК-спектра, а особенно в области от 1 до 100 мкм, в которой коэффициент поглощения увеличен более чем в два раза по сравнению с существующими аналогами, за счет чего снижается интенсивность лучистого теплопереноса и, следовательно, дополнительно снижается коэффициент теплопроводности при высоких температурах, повышенной механической прочностью конечного материала, которая увеличена более чем на 30% по сравнению с существующими аналогами за счет точного соблюдения диаметра и гибкости армирующих волокон, при изгибе радиусом 10 мм и выше не образуется магистральных трещин и не происходит разрушения образца.

Испытания вибрационной нагрузкой показали сниженную осыпаемость материала, в частности, в области частот от 10 до 2500 Гц в течение 140-160 с, потеря массы не превышала 10%, а увеличение коэффициент теплопроводности не превышало 8%.

Таким образом, в предложенном способе достигается требуемый технический результат, заключающийся в расширении области применения, поскольку он обеспечивает получение теплоизоляционных материалов на основе аэрогеля с улучшенными теплоизоляционными свойствами, в частности, с относительно низким коэффициентом теплопроводности в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК-спектра, повышенной механической прочностью и гибкостью, сниженной осыпаемостью.

Похожие патенты RU2696638C1

название год авторы номер документа
Теплоизоляционный материал на основе аэрогеля 2019
  • Меньшутина Наталья Васильевна
  • Лебедев Артем Евгеньевич
  • Белоглазов Александр Павлович
  • Нестеров Дмитрий Геннадьевич
RU2731479C1
АЭРОГЕЛЕВЫЙ КОМПОЗИТ ДЛЯ ТЕПЛОИЗОЛЯЦИИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2022
  • Амплеев Андрей Павлович
  • Мартыненко Ирина Сергеевна
  • Лебедев Артем Евгеньевич
  • Меньшутина Наталья Васильевна
  • Голубев Эльдар Валерьевич
  • Корсаков Евгений Сергеевич
RU2795028C1
АЭРОГЕЛЕВЫЙ КОМПОЗИТ С ВОЛОКНИСТЫМ ВАТИНОМ 2001
  • Степаниан Кристофер Дж.
  • Гулд Джордж
  • Бегаг Редун
RU2310702C2
НАНОПОРИСТЫЙ МАТЕРИАЛ ДЛЯ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ ГАЗОВЫХ ДАТЧИКОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Меньшутина Наталья Васильевна
  • Цыганков Павел Юрьевич
  • Худеев Илларион Игоревич
  • Лебедев Артем Евгеньевич
  • Иванов Святослав Игоревич
RU2725031C1
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЭРОГЕЛЯ 2016
  • Хубер, Лукас
  • Ким-Миюшкович, Иво
RU2721110C2
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ 1995
  • Дирк Франк
  • Андреас Циммерманн
RU2146662C1
ВЫСОКОЭФФЕКТИВНЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ ПРОДУКТЫ 2015
  • Голетто Валери
RU2704188C2
ФЕТРОВЫЙ ЛИСТ ИЗ МИНЕРАЛЬНОГО ВОЛОКНА ДЛЯ ПРОИЗВОДСТВА ТЕПЛОИЗОЛЯЦИОННОГО КОМПОЗИТА 2013
  • Аленгрин Саймон
RU2680443C2
АЭРОГЕЛЕВЫЙ КОМПОЗИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2017
  • Ким Хиун-Чол
RU2729992C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО КОМПОЗИЦИОННОГО ИЗДЕЛИЯ 2009
  • Щетанов Борис Владимирович
  • Ивахненко Юрий Александрович
  • Бабашов Владимир Георгиевич
  • Юдин Андрей Викторович
  • Тинякова Елена Викторовна
  • Максимов Вячеслав Геннадьевич
RU2412134C1

Реферат патента 2019 года Способ получения теплоизоляционного материала на основе аэрогеля

Настоящее изобретение относится к технологиям с применением аэрогеля и может быть использовано для получения теплоизоляционных материалов широкого применения. Технический результат заключается в расширении области применения и получении теплоизоляционных материалов с относительно низким коэффициентом теплопроводности в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК-спектра, повышенной механической прочностью и гибкостью, сниженной осыпаемостью и достигается при получении материала путем изготовления упрочняющей структуры, в которую вводят аэрогель с последующей сушкой для получения целевого теплоизоляционного материала, причем упрочняющую структуру изготавливают в виде волокнистой подложки плотностью 0,001-0,1 г/см3, которая состоит из волокон с диаметром 0,1-20 мкм, для получения аэрогеля предварительно получают золь путем смешивания силана с органическим растворителем и водным раствором кислоты с выдержкой мольного соотношения силан:органический растворитель:H2O:кислота, равным 2:(5-10):(2-8):(1-10)×10-3, и выдерживают а течение 24 часов, после чего в полученный на предыдущей стадии золь при перемешивании вводят дополнительное количество органического растворителя до достижения отношения золя к органическому растворителю 1,2-2 и вводят гелирующий агент - раствор основания с выполнением мольного соотношения силан:основание, равного 1:(1-5)×10-2, и проводят выдержку для гелеобразования в течение 10-60 минут, а затем полученный аэрогель вводят в упрочняющую структуру путем их совместного центрифугирования и производят старение композиционного материала.

Формула изобретения RU 2 696 638 C1

Способ получения теплоизоляционного материала на основе аэрогеля, согласно которому изготовляют упрочняющую структуру, в которую вводят аэрогель с последующей сушкой для получения целевого теплоизоляционного материала, отличающийся тем, что упрочняющую структуру изготовляют в виде волокнистой подложки плотностью 0,001-0,1 г/см3, которая состоит из волокон с диаметром 0,1-20 мкм, для получения аэрогеля предварительно получают золь путем смешивания силана с органическим растворителем и водным раствором кислоты с выдержкой мольного соотношения силан:органический растворитель:H2O:кислота, равным 2:(5-10):(2-8):(1-10)×10-3, и выдерживают а течение 24 часов, после чего в полученный на предыдущей стадии золь при перемешивании вводят дополнительное количество органического растворителя до достижения соотношения золя к органическому растворителю 1,2-2 и вводят гелирующий агент - раствор основания с выполнением мольного соотношения силан:основание, равного 1:(1-5)×10-2, и проводят выдержку для гелеобразования в течение 10-60 минут, а затем полученный аэрогель вводят в упрочняющую структуру путем их совместного центрифугирования при скорости вращения центрифуги 500-1500 об/мин в течение 10-60 мин, а для окончательного получения целевого теплоизоляционного материала производят старение композиционного материала в виде включенного в упрочняющую структуру аэрогеля путем его помещения в растворитель на 24 часа, а затем производят его сушку в сверхкритическом режиме, для чего загружают в герметичную установку со сжиженным диоксидом углерода, используемым в приточном режиме, внутри которой устанавливают и поддерживают давление 120-180 атм и температуру 40-100°С в течение 6-12 часов.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696638C1

АЭРОГЕЛЕВЫЙ КОМПОЗИТ С ВОЛОКНИСТЫМ ВАТИНОМ 2001
  • Степаниан Кристофер Дж.
  • Гулд Джордж
  • Бегаг Редун
RU2310702C2
УЛУЧШЕННЫЕ МАТЕРИАЛЫ ГИДРОФОБНЫХ АЭРОГЕЛЕЙ 2015
  • Эванс Оуэн
  • Декрафт Кэтрин
  • Зафиропоулос Николас
  • Дун Вэньтин
  • Михалсик Дэвид
  • Оулд Джордж
  • Мельникова Ирен
RU2668657C1
US 6087407 A1, 11.07.2000
СПОСОБ ПОЛУЧЕНИЯ ГИБКИХ СИЛОКСАНОВЫХ АЭРОГЕЛЕЙ 2017
  • Музафаров Азиз Мансурович
  • Темников Максим Николаевич
  • Кононевич Юрий Николаевич
  • Калинина Александра Александровна
  • Мешков Иван Борисович
  • Эльманович Игорь Владимирович
  • Галлямов Марат Олегович
  • Бузин Михаил Игоревич
  • Васильев Виктор Григорьевич
  • Никифорова Галина Григорьевна
RU2659077C1
WO 2017009858 A1, 19.01.2017.

RU 2 696 638 C1

Авторы

Лебедев Артем Евгеньевич

Меньшутина Наталья Васильевна

Белоглазов Александр Павлович

Нестеров Дмитрий Геннадьевич

Даты

2019-08-05Публикация

2019-01-17Подача