Изобретение относится к области металлургии, а более конкретно к разработке состава порошков для напыления покрытий и может быть использовано для формирования износостойких покрытий с минимальным содержанием оксидов.
Известен состав для борирования металлических порошков в виде смеси 1% фтористого натрия и 99% карбида бора (А.С. СССР 1600152 МПК B22F 0/16, B22F 1/00). Способ позволяет получать борированные порошки с высоким содержанием бора и соответственно с высоким содержанием бора в покрытии. Такие покрытия твердые, но мало пластичные.
Известен состав для борирования металлических порошков в виде смеси 1,5-3,5% фторида или тетрафторбората металла, 1,5-3,5% парафина, остальное карбид бора (Патент Республики Беларусь №4255, B22F 0/16, B22F 1/00, Пантелеенко Ф.И., Константинов В.М., Штемпель О.П.). Способ позволяет получать борированные порошки с высоким содержанием бора и соответственно с высоким содержанием бора в покрытии. Такие покрытия твердые, но мало пластичные.
Известен способ получения порошка, каждая частица которого представляет собой металлическое ядро и борсодержащую диффузионную оболочку при следующем соотношении компонентов бор - 1,0÷9,0 мас. %, сталь 40Л - остальное (Патент Республики Беларусь №11033, МПК 8 В23K 35/30 2008, Пантелеенко Ф.И., Гурченко П.С., Демин М.И., Люцко В.А., Петришин Г.В., Пантелеенко Е.Ф., Сороговец В.И., Пантелеенко А.Ф.). Способ позволяет получать борированные порошки с высоким содержанием бора и соответственно с высоким содержанием бора в покрытии. Такие покрытия твердые, но мало пластичные.
Наиболее близок по техническому решению к заявляемому составу «Самофлюсующийся порошок на железной основе для износостойких покрытий», каждая частица которого состоит из ядра сферической формы и борсодержащей оболочки, отличающийся тем, что ядра представляют собой отходы производства чугунной дроби со средним диаметром 0,05-0,80 мм, а количество бора в порошке составляет 1,0-13,5 мас. % (Патент Республики Беларусь №13823, МПК В22F 1/02, С23С 4/06, В23K 35/30 2009, Пантелеенко Ф.И., Петришин Г.В., Пантелеенко Е.Ф., Кагулько М.П., Константинов В.М.). По этому патенту изготавливаются недорогие самофлюсующеся порошки для напыления износостойких покрытий, которые обеспечивают получение качественных защитных покрытий с высокой износостойкостью и ударной вязкостью. Поставленная задача решается тем, что разработан самофлюсующийся порошок на железной основе для износостойких покрытий, каждая частица которого состоит из ядра сферической формы на железной основе и борсодержащей оболочки. При этом ядра представляет собой отходы производства чугунной дроби со средним диаметром 0,05-0,8 мм, а количество бора в порошке составляет 1-13,5 мас. %. Этот патент на порошок взяли в качестве прототипа. Покрытие, сформированное по способу, указанному в прототипе, имеет следующие недостатки. Содержание бора в покрытии 1-13,5 мас. %, переводит этот материал в разряд эвтектических (литейных) составов, что снижает пластические свойства покрытия напыленного из этого порошка.
Задачей изобретения является: создание борированного порошка для плазменного напыления с целью сохранения пластичности и микротвердости материала покрытия на уровне свойств исходного порошка.
Техническим результатом изобретения является сохранение пластичности напыляемого материала в покрытии, измеряемой по значению микротвердости.
Технический результат достигается тем, что в борированном порошке для плазменного напыления, состоящем из ядра и борсодержащей оболочки, согласно изобретению, количество бора составляет от 1 до 0,1 мас. % порошка и дополнительно содержит от 1 до 0,1 мас. % кремния.
Получаемый технический результат можно объяснить тем, что бор и кремний при напылении покрытий расходуются на взаимодействие с кислородом и формирование летучих химических соединений. В этом случае содержание оксидов в покрытие минимальное, а, следовательно, сохраняется микротвердость, близкая к микротвердости напыляемого порошка, что является индикатором сохранения пластичности напыленного материала, что важно для работоспособности покрытия. Остаточное содержание бора и кремния на поверхности напыляемых частиц повышает вероятность получения прочного соединения между напыляемыми частицами, в том числе и при последующем упрочнении покрытия термопластической обработкой. При формировании покрытий из порошка с содержанием бора 1-13,5 мас. %, по способу, указанному в прототипе, более 95% бора сохраняется в покрытии, что приводит к снижению пластичности покрытия.
Пример 1.
Порошок никеля борировали при температуре 650°С, 2 часа в вакууме в засыпке порошка бора и карбида кремния, в соотношении к никелю 4:1. Содержание бора в порошке никеля оставило 0,95 мас. %, содержание кремния 0,8 мас. %. Порошок напыляли плазмотрона ПП-25 при эффективной мощности 15 кВт. Твердость частиц порошка никеля 3 ГПа, твердость покрытия 3,2 ГПа. При напылении порошка с содержанием бора 2 мас. %, как в прототипе, твердость покрытия 5 ГПа.
Пример 2.
Порошок марганцовистой стали (Fe-23,73%Cr-11,86%Mn-3,18%Ni-0,57%C-0,52Si) борировали при температуре 650°С, 2 часа в вакууме, в засыпке порошка бора и карбида кремния, с соотношением к порошку стали 4:1. Содержание бора в порошке никеля оставило 0,6 мас. % содержание кремния 0,4 мас. %. Порошок напыляли плазмотрона ПП-25 при эффективной мощности 16 кВт. Твердость частиц порошка стали 4 ГПа, твердость покрытия 4,5 ГПа. При напылении порошка с содержанием бора 4 мас. %, как в прототипе, твердость покрытия 6,5 ГПа.
Пример 3.
Порошок кермета 45 мас% TiC - 15 мас% Сr3С2 - 29 мас% NiCr - 11 мас% Мо борировали при температуре 650°С, 2 часа в вакууме, в засыпке порошка бора и карбида кремния, в соотношении к кермету 4:1. Содержание бора в порошке никеля оставило 0,4 мас. % содержание кремния 0,2 мас. %. Порошок напыляли плазмотроном ПП-25 при эффективной мощности 20 кВт. Твердость частиц порошка кермета 22 ГПа, твердость покрытия 23 ГПа. При напылении порошка с содержанием бора 6 мас. %, как в прототипе, твердость покрытия 27 ГПа.
Таким образом, поставленная задача решена. В предлагаемом способе напыления порошком с ограничением содержания бора и кремния в порошке для напыления твердость покрытия повышалась на 5-14% по отношению к твердости напыляемого материала, в то время как при напылении порошком с содержанием бора указанному в прототипе твердость повышалась на 23-66%).
название | год | авторы | номер документа |
---|---|---|---|
ПОРОШКООБРАЗНЫЙ МАТЕРИАЛ ДЛЯ ПЛАЗМЕННОГО НАПЫЛЕНИЯ КОМПОЗИТНЫХ ПОКРЫТИЙ | 2022 |
|
RU2797988C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО АРМИРОВАННОГО ПОРОШКОВОГО МАТЕРИАЛА | 2014 |
|
RU2573309C1 |
Способ газотермического напыления износостойких покрытий на основе системы Ti/TiВ | 2021 |
|
RU2791259C1 |
Способ напыления градиентного покрытия на основе композиционного порошка системы Al:SiN:SiAlON | 2021 |
|
RU2785506C1 |
КОМПОЗИЦИОННЫЙ СОСТАВ ПОРОШКООБРАЗНОГО МАТЕРИАЛА ДЛЯ ПЛАЗМЕННОГО НАПЫЛЕНИЯ | 2022 |
|
RU2803173C1 |
КОМПОЗИЦИОННЫЙ ПОРОШОК ДЛЯ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ | 1994 |
|
RU2085613C1 |
СПОСОБ НАНЕСЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА СТАЛЬНЫЕ ДЕТАЛИ. | 2014 |
|
RU2594998C2 |
СМЕСЬ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ | 1993 |
|
RU2038406C1 |
ПОРОШКОВЫЙ МАТЕРИАЛ ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКОГО ГАЗОТЕРМИЧЕСКОГО ПОКРЫТИЯ | 2004 |
|
RU2262554C1 |
Способ микроплазменного напыления износостойких покрытий на основе плакированных порошков системы Ti/TiB | 2023 |
|
RU2812935C1 |
Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая содержит бор в количестве от 0,1 до 0,95 мас.% и дополнительно содержит от 0,1 до 0,95 мас.% кремния. Обеспечивается сохранение пластичности напыляемого материала в покрытии, определяемой по величине микротвердости. 3 пр.
Борированный порошок для плазменного напыления, состоящий из ядра и борсодержащей оболочки, отличающийся тем, что оболочка дополнительно содержит от 0,1 до 0,95 мас.% кремния, а содержание бора составляет от 0,1 до 0,95 мас.%.
Измерительный циркуль с микрометренным винтом | 1929 |
|
SU13823A1 |
УСТРОЙСТВО ДЛЯ УМЕНЬШЕНИЯ МАГНИТНОГО РАССЕЯНИЯ ГЛАВНЫХ И ДОПОЛНИТЕЛЬНЫХ ПОЛЮСОВ ЭЛЕКТРИЧЕСКИХ МАШИН ПОСТОЯННОГО ТОКА | 1927 |
|
SU11196A1 |
Колориметр | 1927 |
|
SU8636A1 |
Хроматическая гармоника | 1930 |
|
SU29694A1 |
US 3991240 A1, 09.11.1976 | |||
AU 2010279557 A1, 29.03.2012 | |||
US 7722802 B2, 25.05.2010. |
Авторы
Даты
2019-08-12—Публикация
2018-12-18—Подача