Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [1]) создания ложной оптической цели (ЛОЦ), основанный на установке в секторе поиска оптико-электронных средств (ОЭС) оптического отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС. Недостатком способа является имитация свойств ОЭС только в интересах введения в заблуждение локационных средств на этапе поиска. В случае применения поражающего лазерного излучения по ЛОЦ с контролем его эффективности отсутствие эффектов воздействия мощного лазерного излучения может привести к ее распознаванию.
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности формирования ЛОЦ.
Сущность изобретения заключается в дополнительной имитации результата воздействия мощного лазерного изучения на ОЭС путем формирования плазменного образования.
Технический результат достигается тем, что в известном способе формирования ЛОЦ, основанный на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, в состав отражателя водят термическое вещество с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджигают термическое вещество лазерным излучением при превышении порога воспламенения.
Основным демаскирующим признаком ОЭС является ЭПР, позволяющая локационному средству по величине отраженного сигнала обнаружить и определить его местоположение (см., например, [2,3]). В интересах имитации ОЭС применяются ложные цели, воспроизводящие ЭПР. В качестве таких ЛОЦ используют отражатели различной конструкции, параметры отражения оптического излучения которых близки к реальным ОЭС (см., например, [1,3]). Однако в случае применения мощного лазерного излучения по ЛОЦ с последующим контролем результатов воздействия, отсутствие признаков поражения может привести к ее распознаванию (см., например, [3]). Это обусловлено тем, что ЛОЦ более (на порядок) устойчивы к воздействию мощного оптического излучения и соответственно процессы реакции будут существенно отличаться от реального ОЭС. Это связано с тем, что материалы изготовления элементов ЛОЦ выдерживают более высокие мощности лазерного излучения, чем в ОЭС (см., например, [4]). В ОЭС наиболее уязвимым элементом при воздействии мощного лазерного излучения является элемент, находящийся вблизи фокуса, как правило, это фотоприемник или фильтр перед ним, имеющий существенно более низкий порог воспламенения по отношению к ЛОЦ (см., например, [5]). Следовательно, воспроизведение дополнительного признака, определяющий имитацию результатов воздействием мощного оптического излучения на ЛОЦ повысит ее эффективность.
Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - комплекс лазерного воздействия; 2 - ЛОЦ; 3 - излучение отраженное и формируемое ЛОЦ; 4 - поражающее лазерное излучение; 5 - плазменное образование.
Комплекс лазерного воздействия 1, в состав которого входит локационное средство и средство мощного лазерного изучения, осуществляет поиск ОЭС. При приеме отраженного 3 от ЛОЦ 2 изучения комплекс лазерного воздействия 1 идентифицирует как цель и применяет свое средство мощного лазерного изучения. Поражающее лазерное изучение 4 попадает на ЛОЦ 2. В состав ЛОЦ 2 введено термическое вещество с порогом воспламенения, равным порогу воспламенения наиболее неустойчивого элемента ОЭС. Под действием поражающего лазерного изучения на ЛОЦ 2 термическое вещество воспламеняется, образовывая плазменное образование 5. Комплекс лазерного воздействия 1 принимает излучение плазмы или отраженное от нее, и на основании которого принимает ложное решение об успешном выводе из работоспособного состояния ОЭС.
На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает формирующую оптику (линзу) 6, отражающую поверхность 7, в состав которого включено термическое вещество 8 с требуемым порогом воспламенения под действием лазерного излучения.
Устройство работает следующим образом. Оптическое излучение фокусируется формирующей оптикой (линзу) 6 на отражающую поверхность 7. При не превышении мощности оптического изучения порога воспламенения термического вещества 8 падающее оптическое излучение отражается отражающей поверхностью 7. При превышении мощности оптического изучения порога воспламенения термического вещества 8 происходит поджог термического вещества 8 оптическим излучением.
Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении эффективности формирования ЛОЦ за счет дополнительной имитации воздействия мощного лазерного изучения на ОЭС. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ формирования ЛОЦ, основанный на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, введении в состав отражателя термического вещества с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджоге термического вещества лазерным излучением при превышении порога воспламенения.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые вещества, физические свойства взаимодействия с лазерным излучением которых позволяют формировать плазменные образования требуемой структуры.
1. Авторское свидетельство SU №1840937. Устройство для имитации цели. Пасько А.Б., Даневич В.А. МПК G01S 7/40. 15 с. Регистрация 01.10.85. Опубл. 10.09.14 г. Бюл. 25.
2. Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. М.: «Высшая школа», 1983, стр. 26-27.
3. Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, стр. 12-17, 264-266.
4. Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М.: «Наука», 1991, стр. 114.
5. Ольгин С. Проблемы оптоэлектронного противодействия // Зарубежное военное обозрение. №9. 2002. С. 35-41.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОРМИРОВАНИЯ КОМБИНИРОВАННОЙ ЛОЖНОЙ ОПТИЧЕСКОЙ ЦЕЛИ | 2020 |
|
RU2759170C1 |
СПОСОБ ИМИТАЦИИ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА | 2018 |
|
RU2712940C1 |
СПОСОБ ИМИТАЦИИ ПРОСТРАНСТВЕННОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ОТРАЖАЮЩИХ ПОВЕРХНОСТЕЙ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА | 2022 |
|
RU2791568C1 |
СПОСОБ ПОМЕХОЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ | 2021 |
|
RU2777049C1 |
СПОСОБ ИМИТАЦИИ ПОВЕРХНОСТЕЙ ОТРАЖЕНИЯ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА | 2023 |
|
RU2813678C1 |
СПОСОБ ИМИТАЦИИ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА | 2022 |
|
RU2796811C1 |
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ КОМПЛЕКСОВ ЛАЗЕРНОГО ВОЗДЕЙСТВИЯ С ИСПОЛЬЗОВАНИЕМ ЛОЖНЫХ ОПТИЧЕСКИХ ЦЕЛЕЙ | 2022 |
|
RU2784482C1 |
СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ | 2019 |
|
RU2709452C1 |
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ УСТРОЙСТВ ОТ МОЩНОГО ЛАЗЕРНОГО КОМПЛЕКСА | 2021 |
|
RU2772245C1 |
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ | 2020 |
|
RU2744507C1 |
Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения. Достигаемый технический результат – повышение эффективности формирования ложной оптической цели. Способ формирования ложной оптической цели базируется на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, введении в состав отражателя термического вещества с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджоге термического вещества лазерным излучением при превышении порога воспламенения. 2 ил.
Способ формирования ложной оптической цели, основанный на установке в секторе поиска оптико-электронных средств отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения оптико-электронных средств, отличающийся том, что в состав отражателя водят термическое вещество с порогом воспламенения, равным порогу воспламенения элемента из состава оптико-электронных средств с минимальным порогом воспламенения при воздействии лазерного излучения, поджигают термическое вещество лазерным излучением при превышении порога воспламенения.
СПОСОБ ОПТИКО-ЭЛЕКТРОННОГО ПРОТИВОДЕЙСТВИЯ | 2014 |
|
RU2581779C2 |
УСТРОЙСТВО МАСКИРОВКИ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ ОТ СРЕДСТВ ЛАЗЕРНОЙ ПЕЛЕНГАЦИИ ПРОТИВНИКА | 2005 |
|
RU2350992C2 |
Оптико-электронная система для определения спектроэнергетических параметров и координат источника лазерного излучения инфракрасного диапазона | 2015 |
|
RU2616875C2 |
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ СИСТЕМ СКРЫТОГО ВИДЕОНАБЛЮДЕНИЯ | 2006 |
|
RU2308746C1 |
US 5161051 A, 03.11.1992 | |||
WO 2011076187 A1, 30.06.2011 | |||
Устройство для ультрафильтрацииМОлОчНыХ пРОдуКТОВ | 1978 |
|
SU826995A1 |
Авторы
Даты
2019-08-27—Публикация
2018-12-04—Подача