СПОСОБ ФОРМИРОВАНИЯ ЛОЖНОЙ ОПТИЧЕСКОЙ ЦЕЛИ Российский патент 2019 года по МПК G01S7/40 

Описание патента на изобретение RU2698466C1

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [1]) создания ложной оптической цели (ЛОЦ), основанный на установке в секторе поиска оптико-электронных средств (ОЭС) оптического отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС. Недостатком способа является имитация свойств ОЭС только в интересах введения в заблуждение локационных средств на этапе поиска. В случае применения поражающего лазерного излучения по ЛОЦ с контролем его эффективности отсутствие эффектов воздействия мощного лазерного излучения может привести к ее распознаванию.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности формирования ЛОЦ.

Сущность изобретения заключается в дополнительной имитации результата воздействия мощного лазерного изучения на ОЭС путем формирования плазменного образования.

Технический результат достигается тем, что в известном способе формирования ЛОЦ, основанный на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, в состав отражателя водят термическое вещество с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджигают термическое вещество лазерным излучением при превышении порога воспламенения.

Основным демаскирующим признаком ОЭС является ЭПР, позволяющая локационному средству по величине отраженного сигнала обнаружить и определить его местоположение (см., например, [2,3]). В интересах имитации ОЭС применяются ложные цели, воспроизводящие ЭПР. В качестве таких ЛОЦ используют отражатели различной конструкции, параметры отражения оптического излучения которых близки к реальным ОЭС (см., например, [1,3]). Однако в случае применения мощного лазерного излучения по ЛОЦ с последующим контролем результатов воздействия, отсутствие признаков поражения может привести к ее распознаванию (см., например, [3]). Это обусловлено тем, что ЛОЦ более (на порядок) устойчивы к воздействию мощного оптического излучения и соответственно процессы реакции будут существенно отличаться от реального ОЭС. Это связано с тем, что материалы изготовления элементов ЛОЦ выдерживают более высокие мощности лазерного излучения, чем в ОЭС (см., например, [4]). В ОЭС наиболее уязвимым элементом при воздействии мощного лазерного излучения является элемент, находящийся вблизи фокуса, как правило, это фотоприемник или фильтр перед ним, имеющий существенно более низкий порог воспламенения по отношению к ЛОЦ (см., например, [5]). Следовательно, воспроизведение дополнительного признака, определяющий имитацию результатов воздействием мощного оптического излучения на ЛОЦ повысит ее эффективность.

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - комплекс лазерного воздействия; 2 - ЛОЦ; 3 - излучение отраженное и формируемое ЛОЦ; 4 - поражающее лазерное излучение; 5 - плазменное образование.

Комплекс лазерного воздействия 1, в состав которого входит локационное средство и средство мощного лазерного изучения, осуществляет поиск ОЭС. При приеме отраженного 3 от ЛОЦ 2 изучения комплекс лазерного воздействия 1 идентифицирует как цель и применяет свое средство мощного лазерного изучения. Поражающее лазерное изучение 4 попадает на ЛОЦ 2. В состав ЛОЦ 2 введено термическое вещество с порогом воспламенения, равным порогу воспламенения наиболее неустойчивого элемента ОЭС. Под действием поражающего лазерного изучения на ЛОЦ 2 термическое вещество воспламеняется, образовывая плазменное образование 5. Комплекс лазерного воздействия 1 принимает излучение плазмы или отраженное от нее, и на основании которого принимает ложное решение об успешном выводе из работоспособного состояния ОЭС.

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает формирующую оптику (линзу) 6, отражающую поверхность 7, в состав которого включено термическое вещество 8 с требуемым порогом воспламенения под действием лазерного излучения.

Устройство работает следующим образом. Оптическое излучение фокусируется формирующей оптикой (линзу) 6 на отражающую поверхность 7. При не превышении мощности оптического изучения порога воспламенения термического вещества 8 падающее оптическое излучение отражается отражающей поверхностью 7. При превышении мощности оптического изучения порога воспламенения термического вещества 8 происходит поджог термического вещества 8 оптическим излучением.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении эффективности формирования ЛОЦ за счет дополнительной имитации воздействия мощного лазерного изучения на ОЭС. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ формирования ЛОЦ, основанный на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, введении в состав отражателя термического вещества с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджоге термического вещества лазерным излучением при превышении порога воспламенения.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые вещества, физические свойства взаимодействия с лазерным излучением которых позволяют формировать плазменные образования требуемой структуры.

1. Авторское свидетельство SU №1840937. Устройство для имитации цели. Пасько А.Б., Даневич В.А. МПК G01S 7/40. 15 с. Регистрация 01.10.85. Опубл. 10.09.14 г. Бюл. 25.

2. Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. М.: «Высшая школа», 1983, стр. 26-27.

3. Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, стр. 12-17, 264-266.

4. Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М.: «Наука», 1991, стр. 114.

5. Ольгин С. Проблемы оптоэлектронного противодействия // Зарубежное военное обозрение. №9. 2002. С. 35-41.

Похожие патенты RU2698466C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ КОМБИНИРОВАННОЙ ЛОЖНОЙ ОПТИЧЕСКОЙ ЦЕЛИ 2020
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Алабовский Андрей Владимирович
  • Павлова Татьяна Николаевна
RU2759170C1
СПОСОБ ИМИТАЦИИ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА 2018
  • Козирацкий Юрий Леонтьевич
  • Глушков Александр Николаевич
  • Кулешов Павел Евгеньевич
  • Алабовский Андрей Владимирович
  • Лобов Владимир Анатольевич
  • Чернышов Павел Валерьевич
  • Нагалин Данил Александрович
  • Мамаджанян Ерванд Александрович
RU2712940C1
СПОСОБ ИМИТАЦИИ ПРОСТРАНСТВЕННОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ОТРАЖАЮЩИХ ПОВЕРХНОСТЕЙ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА 2022
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
RU2791568C1
СПОСОБ ПОМЕХОЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ 2021
  • Кулешов Павел Евгеньевич
  • Козирацкий Юрий Леонтьевич
RU2777049C1
СПОСОБ ИМИТАЦИИ ПОВЕРХНОСТЕЙ ОТРАЖЕНИЯ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА 2023
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
RU2813678C1
СПОСОБ ИМИТАЦИИ ОПТИКО-ЭЛЕКТРОННОГО СРЕДСТВА 2022
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
RU2796811C1
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ КОМПЛЕКСОВ ЛАЗЕРНОГО ВОЗДЕЙСТВИЯ С ИСПОЛЬЗОВАНИЕМ ЛОЖНЫХ ОПТИЧЕСКИХ ЦЕЛЕЙ 2022
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Кулешова Инесса Валериевна
RU2784482C1
СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2019
  • Кулешов Павел Евгеньевич
  • Глушков Александр Николаевич
  • Алабовский Андрей Владимирович
  • Попело Владимир Дмитриевич
  • Марченко Александр Васильевич
RU2709452C1
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ УСТРОЙСТВ ОТ МОЩНОГО ЛАЗЕРНОГО КОМПЛЕКСА 2021
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Ильинов Евгений Владимирович
  • Линник Егор Алексеевич
RU2772245C1
СПОСОБ ЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ 2020
  • Кулешов Павел Евгеньевич
  • Глушков Александр Николаевич
  • Попело Владимир Дмитриевич
  • Марченко Александр Васильевич
  • Царькова Юлия Геннадьевна
  • Алабовский Андрей Владимирович
  • Писаревский Николай Александрович
RU2744507C1

Иллюстрации к изобретению RU 2 698 466 C1

Реферат патента 2019 года СПОСОБ ФОРМИРОВАНИЯ ЛОЖНОЙ ОПТИЧЕСКОЙ ЦЕЛИ

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения. Достигаемый технический результат – повышение эффективности формирования ложной оптической цели. Способ формирования ложной оптической цели базируется на установке в секторе поиска ОЭС отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения ОЭС, введении в состав отражателя термического вещества с порогом воспламенения, равным порогу воспламенения элемента из состава ОЭС с минимальным порогом воспламенения при воздействии лазерного излучения, поджоге термического вещества лазерным излучением при превышении порога воспламенения. 2 ил.

Формула изобретения RU 2 698 466 C1

Способ формирования ложной оптической цели, основанный на установке в секторе поиска оптико-электронных средств отражателя с обобщенными параметрами отражения, повторяющими обобщенные параметры отражения оптико-электронных средств, отличающийся том, что в состав отражателя водят термическое вещество с порогом воспламенения, равным порогу воспламенения элемента из состава оптико-электронных средств с минимальным порогом воспламенения при воздействии лазерного излучения, поджигают термическое вещество лазерным излучением при превышении порога воспламенения.

Документы, цитированные в отчете о поиске Патент 2019 года RU2698466C1

СПОСОБ ОПТИКО-ЭЛЕКТРОННОГО ПРОТИВОДЕЙСТВИЯ 2014
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Прохоров Дмитрий Владимирович
  • Паринов Максим Леонидович
  • Плеве Виктор Вячеславович
  • Сушков Александр Юрьевич
  • Меркулов Руслан Евгеньевич
  • Курьянов Игорь Юрьевич
RU2581779C2
УСТРОЙСТВО МАСКИРОВКИ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ ОТ СРЕДСТВ ЛАЗЕРНОЙ ПЕЛЕНГАЦИИ ПРОТИВНИКА 2005
  • Пархоменко Василий Александрович
  • Рыбаков Александр Николаевич
  • Устинов Евгений Михайлович
  • Конуров Игорь Геннадьевич
  • Малохина Лариса Аркадьевна
  • Привезенцев Александр Александрович
  • Горин Илья Александрович
RU2350992C2
Оптико-электронная система для определения спектроэнергетических параметров и координат источника лазерного излучения инфракрасного диапазона 2015
  • Иванов Владислав Георгиевич
  • Каменев Анатолий Анатольевич
  • Поспелов Герман Витальевич
  • Савин Сергей Владимирович
RU2616875C2
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ СИСТЕМ СКРЫТОГО ВИДЕОНАБЛЮДЕНИЯ 2006
  • Барышников Николай Васильевич
  • Бокшанский Василий Болеславович
  • Карасик Валерий Ефимович
RU2308746C1
US 5161051 A, 03.11.1992
WO 2011076187 A1, 30.06.2011
Устройство для ультрафильтрацииМОлОчНыХ пРОдуКТОВ 1978
  • Голубишен Александр Иванович
SU826995A1

RU 2 698 466 C1

Авторы

Козирацкий Юрий Леонтьевич

Глушков Александр Николаевич

Кулешов Павел Евгеньевич

Дробышевский Николай Васильевич

Прохоров Дмитрий Владимирович

Даты

2019-08-27Публикация

2018-12-04Подача