Способ повышения достоверности воздушной радиационной разведки радиоактивно загрязненной местности Российский патент 2019 года по МПК G01T1/16 

Описание патента на изобретение RU2698499C1

Область техники, к которой относится изобретение

Изобретение относится к области измерения интенсивности гамма-излучения над радиоактивно загрязненной местностью техническими средствами воздушной радиационной разведки.

Уровень техники

Известен способ учета кратности ослабления гамма-излучения слоем воздуха, толщина которого соответствует высоте полета летательного аппарата, реализованный в специализированном комплексе воздушной радиационной разведки ГО-21, путем установки вручную переключателя поддиапазонов в фиксированные положения [1].

Этот способ обладает низкой достоверностью, так как при измерениях мощности дозы не учитывается информация о метеорологических условиях в районе разведки. Кроме этого, переключатель позволяет выставлять лишь пять значений коэффициентов (5; 10; 25; 50; 100), поэтому результаты разведки имеют высокую погрешность.

Известен способ ведения воздушной радиационной разведки местности в районе аварии на ядерном реакторе с разгерметизацией активной зоны, основанный на использовании некоторой фиксированной зависимости кратности ослабления гамма-излучения от высоты над поверхностью земли [2]. Способ ориентирован на загрязнение, обусловленное выбросом продуктов деления из ядерного реактора для кампании в диапазоне от 10 до 720 суток и длительности выдержки топлива от 0 до 1800 суток, и может быть использован при ведении радиационной разведки на высоте до 150 метров.

Недостатком указанного способа является ограниченные условия его применения по высоте разведки и радионуклидному составу загрязнения. Кроме того, рассматриваемый способ также обладает низкой достоверностью, так как при его реализации не учитываются погрешности, обусловленные изменением метеорологических условий, которые могут значительно влиять на результаты разведки.

Известен способ ведения воздушной радиационной разведки местности с использованием беспилотного летательного аппарата вертолетного типа, заключающийся в измерении на высоте полета мощности дозы и приведении ее величины к интересующей высоте с использованием зависимости мощности дозы над радиоактивно загрязненной местностью от высоты измерения, составленной по результатам измерения на различных высотах при вертикальном полете над обследуемой местностью [3].

Недостатком указанного способа является необходимость дополнительного измерения мощности дозы над одним участком местности на разных высотах.

Существует способ, реализованный в авиационных измерителях мощности дозы типа ИМД-31 [4], в которых используются два детектора, один из которых закрыт фильтром, имитирующим дополнительный слой воздуха заданной толщины. При реализации такого способа предполагается, что летательный аппарат проводит одновременно измерения на двух различных высотах, что исключает необходимость повторного полета на другой высоте над тем же участком местности.

Недостатком данного способа является то, что материал фильтра и воздух обладают различными зависимостями от энергии гамма-квантов сечений фотопоглощения, комптоновского рассеяния гамма-квантов и сечения процесса образования пары электрон-позитрон в поле ядра атома вещества. Это обуславливает совпадение значения кратности ослабления гамма-излучения фильтром и имитируемым слоем воздуха только для одного значения энергии квантов. Для остальных значений энергии появляется дополнительная погрешность измерения. Кроме того, данный способ не учитывает текущую плотность воздуха. Это также обуславливает дополнительную погрешность измерения, которая в определенных условиях может принять неприемлемо высокие значения.

Наиболее близким техническим решением к предлагаемому изобретению является способ коррекции измеренного значения мощности дозы, приведенного к уровню 1 м над поверхностью земли, посредством автоматического учета зависимости плотности воздуха от высоты расположения местности над уровнем моря и умножения измеренного значения мощности дозы на соответствующие поправочные коэффициенты. Указанный способ реализован в авиационных измерителях мощности дозы типов ИМД-31 и ИМД-32. Выбираемые вручную значения высоты расположения местности над уровнем моря и соответствующие им поправочные коэффициенты приведены в таблице 1 [4-6].

В результате указанной корректировки учитывается лишь нормальное атмосферное давление для высоты обследуемой местности над уровнем моря, но даже на фиксированной высоте давление может меняться в широких пределах в зависимости от климатических условий, при этом необходимый поправочный коэффициент может отличаться от табличного на 20-30%. Кроме этого, отсутствует учет температуры воздуха, изменение которой влияет на величину мощности дозы значительнее, чем атмосферное давление. Поэтому осуществление радиационной разведки указанным способом может привести к значительному снижению достоверности.

Раскрытие сущности изобретения

В случае возникновения аварии на радиационно опасном объекте для достоверного и оперативного определения параметров радиоактивно загрязненной местности и различных объектов используют технические средства воздушной радиационной разведки местности. Их применение позволяет своевременно и целенаправленно привести в действие комплекс мероприятий по защите населения от воздействия ионизирующего излучения.

Методическая основа проведения измерения у существующих приборов воздушной радиационной разведки заключается в том, что для определения мощности дозы гамма-излучения в некоторой точке необходимо измерить мощность дозы над этой точкой на высоте полета летательного аппарата и умножить измеренную величину на величину кратности ослабления гамма-излучения слоем воздуха между высотой полета и исследуемой высотой. Величина кратности ослабления будет изменяться в соответствии с зависимостью мощности дозы над радиоактивно загрязненной местностью от высоты измерения. При этом на данную зависимость будут влиять метеорологические условия в районе разведки.

Распространение ионизирующего излучения в атмосфере зависит, как и в любой другой среде, от ее плотности и компонентного состава [7]. Состав сухого воздуха в области гомосферы до высоты 90 км остается практически постоянным. Плотность воздуха преимущественно зависит от температуры и атмосферного давления, количество содержащейся в воздухе воды в виде пара и осадков на плотность влияет незначительно [8]. Поэтому отсутствие учета изменения температуры и давления воздуха может существенно снизить точность результатов воздушной радиационной разведки местности.

В частности при ведении воздушной радиационной разведки местности на высотах до 500 метров изменение атмосферного давления обуславливает значительную дополнительную погрешность до 40%, изменение температуры воздуха - до 80% при доверительной вероятности 0,95, поэтому учет данных параметров необходим для получения достоверных результатов разведки [8].

Задача настоящего изобретения заключается в повышении достоверности воздушной радиационной разведки местности путем снижения погрешности, обусловленной изменением метеорологических условий в районе ведения разведки.

Поставленная задача решается путем автоматического корректирования результатов воздушной радиационной разведки местности с помощью аналитической зависимости, позволяющей вычислять поправочный коэффициент, учитывающий влияние температуры и давления воздуха при различной высоте радиационной разведки.

Предлагаемое изобретение осуществляют следующим образом. Перед началом радиационной разведки измеряют атмосферное давление и температуру воздуха в районе ведения радиационной разведки, вычисляют поправочный коэффициент по формуле

где р - атмосферное давление, Па;

Т - температура воздуха, K;

h - высота ведения разведки, м.

Затем осуществляют радиационную разведку местности известными способами, измеряя мощность дозы гамма-излучения на выбранной высоте полета и пересчитывая измеренное значение к высоте 1 метр умножением его на величину кратности ослабления гамма-излучения слоем воздуха при стандартных метеорологических условиях между высотой полета и высотой 1 метр над поверхностью земли. После этого умножают полученное значение мощности дозы гамма-излучения на поправочный коэффициент К, вычисленный по предлагаемой формуле.

Указанная формула была получена в результате аппроксимации зависимости мощности поглощенной в воздухе дозы гамма-излучения радиоактивно загрязненной местности от высоты измерения, температуры и давления воздуха, составленной на основе математического моделирования равномерного плоского источника гамма-излучения на основе радионуклида Cs-137, расположенного в воздухоэквивалентной среде.

Предлагаемая формула позволяет получить поправочный коэффициент, учитывающий влияние температуры воздуха в диапазоне от минус 50 до 50°C и давления воздуха в диапазоне от 660 до 860 мм рт.ст. при высоте радиационной разведки до 500 м с погрешностью, не превышающей ±3%.

Технический результат изобретения - повышение достоверности воздушной радиационной разведки местности путем снижения погрешности, обусловленной изменением метеорологических условий в районе ведения разведки.

Осуществление изобретения

Приведем пример использования предлагаемого способа для случая, когда летательный аппарат с техническим средством воздушной радиационной разведки на борту проводит измерение мощности дозы гамма-излучения над радиоактивно загрязненной местностью на высоте полета 500 метров. Местность равномерно загрязнена радиоактивными веществами с начальной энергией гамма-квантов 0,662 МэВ и поверхностной активностью 80 кБк/см2. Температура воздуха в районе разведки составляет 25°C (298 K), атмосферное давление равно 700 мм рт.ст. (93326 Па). Результаты измерения мощности дозы в указанных условиях будут ниже соответствующих значений при стандартных метеорологических условиях на 50%.

Перед началом измерения мощности дозы в районе ведения радиационной разведки измеряют атмосферное давление и температуру воздуха, рассчитывают поправочный коэффициент по предлагаемой формуле

Затем проводят измерение мощности дозы на высоте полета, которое составит для указанных условий 1 мрад/ч, пересчитывают измеренное значение к высоте 1 метр умножением его на величину кратности ослабления гамма-излучения слоем воздуха при стандартных метеорологических условиях, которая равна для данного примера 223 [8], получая значение 223 мрад/ч. После этого умножают указанную величину на поправочный коэффициент, равный 2,01, получая действительное значение мощности дозы на высоте 1 метр, равное 447 мрад/ч. В результате применение предлагаемого способа в приведенном примере позволяет избавиться от дополнительной погрешности измерения, равной минус 50%, которая соответствует двукратному занижению результатов радиационной разведки.

СПИСОК ЛИТЕРАТУРЫ

1. ГО-21. Техническое описание и инструкция по эксплуатации [Текст]. - 88 с.

2. Способ ведения воздушной радиационной разведки местности [Текст]: пат. 2554618 Рос. Федерация: МПК G01T 1/169 (2006.01) / Р.Н. Садовников, Д.В. Фролов; заявитель и патентообладатель ФГБУ «33 ЦНИИИ» МО РФ. - №2013154167/28; заявл. 05.12.2013; опубл. 27.06.2015, Бюл. №18. - 7 с.

3. Способ ведения воздушной радиационной разведки местности с использованием беспилотного летательного аппарата вертолетного типа [Текст]: пат. 2620333 Рос. Федерация: МПК G01T 1/169 (2006.01) / Д.А. Кожевников, Р.Н. Садовников, Д.И. Лукоянов, А.В. Быков, С.О. Румянцев, И.Ю. Кулагин; заявитель и патентообладатель ФГБУ «33 ЦНИИИ» МО РФ. - №2016133815/28; заявл. 17.08.2016; опубл. 24.05.2017, Бюл. №15. - 13 с.

4. Измеритель мощности дозы ИМД-31-01. Руководство по технической эксплуатации. ЖШ1.289.183-01 РЭ [Текст]. - 1986. - 246 с.

5. Измеритель мощности дозы ИМД-31. Техническое описание и инструкция по эксплуатации. ЖШ1.289.183 РЭ [Текст]. - 132 с.

6. Комплекс ИМД-32. Техническое описание и инструкция по эксплуатации ЖШ1.289.459 ТО [Текст]. - М.: НИЦ СНИИП, 1997 - 85 с.

7. Распространение ионизирующих излучений в воздухе [Текст] / Климанов В.А., Коновалов С.А., Кочанов В.А. и др. Под ред. В.И. Кухтевича и В.П. Машковича. - М.: Атомиздат, 1979. - 216 с.

8. Израэль Ю.А., Стукин Е.Д. Гамма-излучение радиоактивных выпадений [Текст]. - М.: Атомиздат, 1967. - 224 с.

Похожие патенты RU2698499C1

название год авторы номер документа
Способ воздушной радиационной разведки радиоактивно загрязненной местности с лесным покровом 2019
  • Кожевников Дмитрий Андреевич
RU2732471C1
Способ ведения воздушной радиационной разведки местности с использованием беспилотного летательного аппарата вертолетного типа 2016
  • Кожевников Дмитрий Андреевич
  • Садовников Роман Николаевич
  • Лукоянов Дмитрий Иванович
  • Быков Алексей Владимирович
  • Румянцев Сергей Олегович
  • Кулагин Иван Юрьевич
RU2620333C1
СПОСОБ ВЕДЕНИЯ ВОЗДУШНОЙ РАДИАЦИОННОЙ РАЗВЕДКИ МЕСТНОСТИ 2013
  • Садовников Роман Николаевич
  • Фролов Дмитрий Владимирович
RU2554618C1
СПОСОБ ВЕДЕНИЯ ВОЗДУШНОЙ РАДИАЦИОННОЙ РАЗВЕДКИ МЕСТНОСТИ ИЗМЕРИТЕЛЕМ МОЩНОСТИ ДОЗЫ С ОДНИМ ДЕТЕКТОРОМ 2015
  • Садовников Роман Николаевич
RU2601774C1
Способ определения параметров аварийного радиационного источника по данным воздушной радиационной разведки местности 2021
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Кобцев Дмитрий Юрьевич
  • Сафронова Анна Владимировна
  • Шабунин Сергей Иванович
RU2755604C1
Способ определения оптимального маршрута движения при преодолении участка холмистой радиоактивно загрязненной местности 2020
  • Глухов Юрий Александрович
  • Садовников Роман Николаевич
  • Кулагин Иван Юрьевич
  • Абаева Ксения Сергеевна
RU2741732C1
СПОСОБ ОБНАРУЖЕНИЯ ОПАСНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ МЕСТНОСТИ 2013
  • Мозжилкин Александр Владимирович
  • Садовников Роман Николаевич
  • Васильев Алексей Вениаминович
RU2549610C1
СПОСОБ ОЦЕНКИ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ НОСИМЫМ ИЗМЕРИТЕЛЕМ МОЩНОСТИ ДОЗЫ НА РАДИОАКТИВНО ЗАГРЯЗНЕННОЙ МЕСТНОСТИ В ПЕРИОД ФОРМИРОВАНИЯ СЛЕДА РАДИОАКТИВНОГО ОБЛАКА 2015
  • Садовников Роман Николаевич
  • Кожевников Дмитрий Андреевич
  • Румянцев Сергей Олегович
  • Кулагин Иван Юрьевич
  • Федосеев Василий Михайлович
  • Лукоянов Дмитрий Иванович
RU2604695C1
Способ автоматизированного выявления границ зон радиоактивного загрязнения местности с использованием беспилотного летательного аппарата 2018
  • Кожевников Дмитрий Андреевич
  • Васильев Алексей Вениаминович
  • Быков Алексей Владимирович
  • Кулагин Иван Юрьевич
RU2694465C1
Способ определения местоположения точечного источника гамма-излучения на местности 2019
  • Иноземцев Валерий Александрович
  • Кулагин Иван Юрьевич
  • Садовников Роман Николаевич
  • Абаева Ксения Сергеевна
  • Васильев Алексей Вениаминович
  • Лукоянов Дмитрий Иванович
  • Быков Алексей Владимирович
  • Румянцев Сергей Олегович
  • Кожевников Дмитрий Андреевич
RU2698496C1

Реферат патента 2019 года Способ повышения достоверности воздушной радиационной разведки радиоактивно загрязненной местности

Изобретение относится к области измерения интенсивности гамма-излучения над радиоактивно загрязненной местностью техническими средствами воздушной радиационной разведки. Способ может быть использован во время воздушной радиационной разведки радиоактивно загрязненной местности для автоматического корректирования значения мощности дозы, приведенные к высоте 1 метр над поверхностью земли, умножением на поправочный коэффициент КП, вычисляемый по формуле

,

где p - атмосферное давление, Па; Т - температура воздуха, K; h - высота ведения разведки, м. Технический результат – повышение достоверности воздушной радиационной разведки местности путем снижения погрешности, обусловленной изменением метеорологических условий в районе ведения разведки. 1 табл.

Формула изобретения RU 2 698 499 C1

Способ повышения достоверности воздушной радиационной разведки радиоактивно загрязненной местности, заключающийся в измерении мощности дозы гамма-излучения на выбранной высоте полета с последующим умножением измеренного значения на величину кратности ослабления гамма-излучения слоем воздуха при стандартных метеорологических условиях между высотой полета и высотой 1 метр над поверхностью земли, отличающийся тем, что в районе ведения радиационной разведки измеряют атмосферное давление и температуру воздуха и автоматически корректируют значение мощности дозы на высоте 1 метр над поверхностью земли умножением на поправочный коэффициент КП, вычисляемый по формуле

где p - атмосферное давление, Па;

Т - температура воздуха, K;

h - высота ведения разведки, м.

Документы, цитированные в отчете о поиске Патент 2019 года RU2698499C1

Способ ведения воздушной радиационной разведки местности с использованием беспилотного летательного аппарата вертолетного типа 2016
  • Кожевников Дмитрий Андреевич
  • Садовников Роман Николаевич
  • Лукоянов Дмитрий Иванович
  • Быков Алексей Владимирович
  • Румянцев Сергей Олегович
  • Кулагин Иван Юрьевич
RU2620333C1
СПОСОБ ВЕДЕНИЯ ВОЗДУШНОЙ РАДИАЦИОННОЙ РАЗВЕДКИ МЕСТНОСТИ ИЗМЕРИТЕЛЕМ МОЩНОСТИ ДОЗЫ С ОДНИМ ДЕТЕКТОРОМ 2015
  • Садовников Роман Николаевич
RU2601774C1
СПОСОБ ОБНАРУЖЕНИЯ РАДИАЦИОННОГО ЗАГРЯЗНЕНИЯ 2013
  • Боярчук Кирилл Александрович
  • Карелин Александр Витальевич
  • Туманов Михаил Владимирович
RU2561305C2
Многофункциональная схема многозначной логики 1980
  • Кондратик Владимир Васильевич
SU930681A1
US 20170160404 A1, 08.06.2017.

RU 2 698 499 C1

Авторы

Кожевников Дмитрий Андреевич

Даты

2019-08-28Публикация

2019-01-17Подача