СПОСОБ ОЦЕНКИ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ НОСИМЫМ ИЗМЕРИТЕЛЕМ МОЩНОСТИ ДОЗЫ НА РАДИОАКТИВНО ЗАГРЯЗНЕННОЙ МЕСТНОСТИ В ПЕРИОД ФОРМИРОВАНИЯ СЛЕДА РАДИОАКТИВНОГО ОБЛАКА Российский патент 2016 года по МПК G01T1/00 

Описание патента на изобретение RU2604695C1

Изобретение относится к области измерения параметров ионизирующего излучения, а конкретно измерения мощности дозы гамма-излучения на радиоактивно загрязненной местности в период формирования следа облака, образованного в результате разрушения объектов ядерной энергетики, и может быть использовано при ведении радиационной разведки пешим порядком.

Известен способ повышения достоверности радиационных измерений на радиоактивно загрязненной местности, заключающийся в выявлении факта радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы методом мазка [1].

К недостаткам этого способа-аналога относится следующее.

При проведении измерений загрязненности блока детектирования одного прибора необходимо использовать дополнительное лабораторное оборудование: кюветы, пинцеты, вату медицинскую, спирт этиловый ректифицированный или другие органические растворители, а также дозиметрическую аппаратуру. Кроме этого необходимо наличие чистого в радиационном отношении помещения, что создает очевидные трудности при проведении подобных измерений.

Также известен способ прямого измерения поверхностной загрязненности радиоактивными нуклидами [2]. Указанный способ выбран в качестве прототипа, так как имеет наибольшее сходство с заявленным способом.

Недостатком этого способа-прототипа является то, что для его осуществления необходимо дополнительное дозиметрическое оборудование.

Технический результат, достигаемый в заявленном изобретении, заключается в том, что для установления факта загрязненности блока детектирования измерителя мощности дозы исключена необходимость использования дополнительного дозиметрического и лабораторного оборудования.

Указанный технический результат достигается тем, что при ведении радиационной разведки на радиоактивно загрязненной местности в период формирования следа облака, образованного в результате разрушения объектов ядерной энергетики, выявляется факт радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы. Для этого необходимо провести два измерения мощности дозы на разных высотах над радиоактивно загрязненной местностью и сравнить отношение полученных показаний с контрольным числом, которое соответствует случаю, когда детекторный блок не загрязнен радиоактивными веществами. При этом рассчитано, что наибольшая эффективность способа будет достигнута при измерении на высотах 10 см и 300 см. Отношение находится по формуле:

где К - величина, сравниваемая с контрольным числом;

P10 - мощность дозы ионизирующего излучения, измеренная над ровной равномерно радиоактивно загрязненной местностью на высоте 10 см, Р/ч;

P300 - мощность дозы ионизирующего излучения, измеренная над ровной равномерно радиоактивно загрязненной местностью на высоте 300 см, Р/ч.

Как известно, в результате аварии, вызванной вводом избыточной реактивности, на 4-м энергоблоке Чернобыльской АЭС произошло диспергирование ядерного топлива на частицы от единиц до десятков микрометров. Контакт диспергированного топлива с теплоносителем вызвал паровой взрыв, в результате которого разрушились технологические каналы, разгерметизировался реактор, и часть диспергированного топлива была выброшена в атмосферу. Последующий выброс формировался в течение 9 суток в процессе горения графита, окисления поврежденного топлива и выноса радиоактивных продуктов за пределы реактора вследствие эффекта трубы, связанного с воздушным потоком из нижних помещений реактора. На сегодняшний день выброс оценивается 3,5% всего количества топлива, имевшегося в реакторе.

Благодаря легкости выделения и измерения параметров первыми были изучены «крупные» частицы размером свыше 10-15 мкм. Однако доля таких частиц относительно урановых в ближних к АЭС выпадениях составляет не более 10% [3].

Детекторные блоки и сами приборы представляют собой объекты, имеющие сложную поверхность. При этом даже незначительное количество радионуклида может обусловить значительную мощность дозы гамма-излучения. В частности, известно, что 1 мг 226Ra на расстоянии 1 см будет создавать 8,4 Р/ч. Эта величина превышает значение уровня радиации на границе зоны умеренного радиоактивного заражения. Одним из наиболее распространенных радионуклидов, входящих в состав радиоактивного заражения на следе облака, является 137Cs+137mBa. Энерговыделение 1 г 226Ra составляет 6,44·1010 МэВ/с, а 137Cs+137mBa - 1,86·1012 МэВ/с. Следовательно, 0,035 мг 137Cs+137mBa будет создавать такую мощность дозы, как 1 мг 226Ra. Указанная масса может содержаться всего примерно в 10-15 частицах диаметром 100 мкм. Следовательно, несколько сотен мелких аэрозольных частиц общей массой несколько миллиграмм, задержавшихся на поверхности детекторного блока, могут обусловить показания свыше 100 Р/ч. Такие показания прибора должны обуславливать немедленное принятие мер радиационной защиты.

Таким образом, завышение показаний прибора может привести к завышению реального уровня радиационной опасности и, как следствие, либо к использованию избыточных мер радиационной защиты, либо к принятию решения о невозможности ведения действий в пределах части выделенного района.

Наиболее реальная ситуация, которая может повлечь реализацию указанной погрешности в показаниях прибора, на наш взгляд, должна сложиться, когда прибор находился в открытом состоянии в период формирования радиоактивного заражения местности. В этом случае загрязнение прибора будет максимальным.

Составим выражение для оценки величины показаний измерителя мощности дозы в случае, если измерение осуществляется на незараженной местности, однако детектор прибора загрязнен радиоактивными материалами.

При проведении вычислений мощности дозы в некоторой точке пространства обычно полагают, что поле излучения практически однородно в пределах объема пространства, занимаемого детектором. В рассматриваемом случае поле гамма-излучения необходимо считать существенно неоднородным, поскольку, во-первых, расстояние от счетчика до зараженной стенки блока детектирования намного меньше размеров самого блока, и, во-вторых, плотность радиоактивного загрязнения σ в общем случае будет неодинаковой.

Для учета этого фактора необходимо рассмотреть, какую мощность дозы будет регистрировать счетчик от загрязненного элемента поверхности детекторного блока, а затем провести суммирование полученных величин.

Большинство газоразрядных счетчиков, предназначенных для регистрации гамма-излучения, имеют цилиндрическую форму. При этом анод выполняется в виде нити, располагаемой в центре счетчика. Детекторные блоки многих приборов, например ДП-5, ИМД-1, ИМД-5, также имеют форму цилиндра. Полагая, что счетчик располагается в центре блока детектирования, можно ввести цилиндрическую систему координат (ρ, φ, z), которая позволит упростить проведение расчетов. Для этого, как показано на фигуре 1, начало отсчета необходимо поместить на одну из торцевых частей блока детектирования, а ось OZ направить вдоль его центра.

На фигуре 2 представлена схема для расчета дифференциального потока электронов во внутренний объем счетчика.

Если вся наружная поверхность блока детектирования загрязнена, то в качестве элементарного источника выступает элемент поверхности ΔsK, обладающий активностью ΔA=σ(φ0,H)ΔsK. Если квантовый выход радионуклида, вызвавшего загрязнение, равен n, то интенсивность потока гамма-квантов от этого элемента составит ΔJ=nΔA=nσ(φ0,H)ΔsK. Поскольку ΔsK=RKΔφ0ΔH, то интенсивность потока электронов отдачи, обусловленного всей загрязненной поверхностью блока детектирования, составит:

где Je - интенсивность интегрального потока электронов отдачи, идущего во внутренний объем счетчика, с-1;

RK - радиус корпуса детекторного блока, м;

RD - радиус газоразрядного счетчика, м;

ρ - плотность материала стенок счетчика, кг/м3;

b - толщина стенок счетчика, м;

n - квантовый выход радионуклида, вызвавшего загрязнение, с-1;

Z - атомный номер вещества, из которого сделаны стенки счетчика;

NA - постоянная Авогадро, равная 6,023·1023 моль-1;

mM - молярная масса вещества, из которого сделаны стенки счетчика, кг/моль;

0, H) - угловые координаты малого элемента зараженной поверхности корпуса детекторного блока площадью ΔsK;

(φ, h) - угловые координаты малого элемента поверхности счетчика площадью Δs;

- расстояние между выбранными элементами поверхности детектора и счетчика, м;

σ - плотность загрязнения поверхности детектора, МэВ/(см2·с);

σе - вероятность появления электрона отдачи во внутреннем объеме счетчика;

θ - угол падения гамма квантов, рад;

ξ - угол между направлением падения гамма-квантов и боковой поверхностью счетчика, рад.

Численный расчет интеграла (2) с учетом принятых исходных данных показал, что интенсивность срабатывания счетчика должна составлять примерно 0,126 с-1. С учетом того, что чувствительность счетчика (скорость счета на единицу мощности дозы падающего излучения) составляет примерно 0,025 (1/с)/(мкР/ч), прибор должен показывать примерно 5 мкР/ч за счет заражения корпуса детекторного блока.

Следовательно, измеритель мощности дозы может завышать свои показания до 1,5 раз за счет заражения поверхности детекторного блока радиоактивными веществами с той же плотностью, с которой произошло заражение местности.

Рассмотрим гамма-поле плоского изотропного источника в бесконечной гомогенной воздухоэквивалентной среде, имеющего постоянную поверхностную плотность загрязнения. Таким источником является, например, бесконечно тонкая пленка, которая равномерно покрыта гамма-излучателем и помещена в бесконечную воздушную среду.

Возьмем точку А, расположенную над поверхностью, равномерно загрязненной с поверхностной плотностью σ гамма-излучателем с энергией квантов Е. Мощность дозы в точке А, обусловленная участком поверхности площадью ΔS, удаленным от нее на расстояние r, будет равна

где k - постоянная, зависящая от единиц измерений. В случае, когда плотность загрязнения σ измеряется в МэВ/(см2·с) и рассматривается экспозиционная мощность дозы в Р/ч, то k=5,0910-2 Р·см3·с/(ч·МэВ);

σa, µ - линейные коэффициенты поглощения и рассеяния γ-излучения в воздухе соответственно, см-1;

ВД(r,Е) - дозовый фактор, учитывающий вклад в мощность дозы рассеянного γ-излучения.

Для определения суммарной мощности дозы в точке А необходимо проинтегрировать выражение (3) по всей зараженной поверхности. Для этого обозначим высоту положения точки А над загрязненной поверхностью переменной h. В этом случае расстояние r можно выразить следующим образом:

где R - расстояние от точки О, являющейся проекцией точки А на загрязненную поверхность, до участка ΔS.

Расстояние R и угол φ между некоторым выбранным из точки О направлением и направлением на участок ΔS задают полярную систему координат. В заданной системе координат интегральную мощность дозы можно рассчитать, выполнив суммирование по всем участкам и перейдя к пределу ΔS→0. В результате получается следующее выражение для расчета суммарной мощности дозы в точке О [4]:

где Rmax - радиус круга на загрязненной поверхности с центром в точке О, элементы которого вносят сколько-нибудь значимый вклад в мощность дозы в точке А, см.

Носимые измерители мощности дозы имеют в своем составе удлинительные штанги, длина которых представлена в таблице 1. Максимальная длина удлинительных штанг составляет от 72 до 100 см. Проведенные наблюдения показывают, что человек среднего роста 175 см, используя самую короткую штангу длиной 72 см вытянутой вверх рукой, может измерить мощность дозы на высоте 302 см от уровня поверхности, на которой он стоит. Таким образом, можно сделать вывод, что при использовании носимого измерителя мощности дозы есть возможность измерения мощности дозы на высоте 3 метра от поверхности, на которой находится дозиметрист.

Для нахождения контрольного значения, равного отношению мощностей доз, измеренных на разных высотах, необходимо, чтобы разница между высотами была максимальной.

Рассмотрим гамма-поле плоского изотропного источника 137Cs в бесконечной гомогенной воздушной среде, имеющего постоянную удельную активность 1 Ки/км2. Используя формулу (5), найдем величины мощностей доз ионизирующего моноэнергетического (E=662 кэВ) излучения от данного плоского источника в форме круга радиусом r в точке наблюдения, находящейся над центром этой площадки на высоте h.

Для площадки бесконечного радиуса мощность дозы равна 15,51 мкР/ч и при h=10 см и 8,64 мкР/ч при h=300 см. Расчеты показывают, что при измерении на высотах h=10 см и h=300 см на площадке радиусом r=250 м будет формироваться около 97% мощности дозы, а на площадке радиусом r=500 м - 99,7%.

Учитывая различный рост людей, проводящих измерения, рассчитаем погрешность, обусловленную различием в росте. Для этого рассчитаем мощность дозы, измеренную на высотах 280 см и 320 см, то есть людьми с ростом 155 см и 195 см соответственно.

Отношение мощности дозы на высоте 10 см к мощности дозы на указанной высоте найдем по формуле (1). Результаты расчетов представлены в таблице 2.

Из таблицы 2 можно заключить, что при проведении измерений человеком, рост которого находится в диапазоне от 155 до 195 см, контрольное число будет составлять от 1,77 до 1,82, то есть погрешность, обусловленная различным ростом дозиметриста, составляет ±1,5%. Это указывает на то, что при реализации описываемого способа оценки достоверности результатов измерения рост дозиметриста влияет незначительно.

Отношение величины мощности дозы ионизирующего излучения плоского изотропного источника в бесконечной гомогенной воздухоэквивалентной среде, имеющей постоянную поверхностную плотность загрязнения, измеренной на высоте 10 см, к аналогичной величине, измеренной на высоте 300 см, равно 1,8. Данное значение является контрольным и соответствует случаю, когда блок детектирования не загрязнен.

Для установления факта загрязненности блока детектирования радиоактивными веществами необходимо измерить мощность дозы над наиболее ровным участком радиоактивно загрязненной местности, расположив блок детектирования на высоте 10 см и 300 см, сравнить отношение полученных показаний с контрольной величиной, равной 1,8. В случае наличия загрязненности блока детектирования радиоактивными веществами полученное отношение будет меньше контрольного значения. Расчеты показали, что в случае загрязнения блока детектирования радиоактивными веществами с той же плотностью, с которой произошло заражение местности, на которой производятся измерения, указанное отношение будет равно 1,5. Учитывая собственную погрешность прибора и погрешность, обусловленную ростом дозиметриста, можно уверенно говорить о радиоактивном загрязнении блока детектирования в случае, когда отношение мощностей доз на высотах 10 см и 300 см будет менее 1,7.

Предлагаемое техническое решение позволяет своевременно выявлять факт радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы без использования дополнительного оборудования и обоснованно принимать безотлагательные решения по мероприятиям в районе радиоактивного загрязнения.

Источники информации

1. Патент РФ 2408003, МПК G01N15, заявл. 15.12.09, опубл. 27.12.10. Способ определения поверхностного загрязнения и устройство для отбора проб с загрязненной поверхности [Текст] / Богатов С.А.; заявитель и патентообладатель ФГУ Российский науч. центр "Курчатовский ин-т". 5 с.

2. Израэль Ю.А. Радиоактивные загрязнения природных сред в зоне аварии на атомной электростанции [Текст] / Израэль Ю.Α., Петров В.Н. и др. // Метеорология и гидрология. - 1987. - №2.

3. Богатов С.Α., Боровой А.А. Форма и характеристики частиц топливного выброса при аварии на Чернобыльской АЭС [Текст] // Атомная энергия, т. 69, вып. 1. - 1990. - 7 с.

4. Израэль Ю.А., Стукин Е.Д. Гамма-излучение радиоактивных выпадений [Текст]. - М.: Атомиздат, 1967. - 222 с.

Похожие патенты RU2604695C1

название год авторы номер документа
Способ автоматического определения местоположения точечного источника гамма-излучения на местности 2016
  • Кулагин Иван Юрьевич
  • Глухов Юрий Александрович
  • Садовников Роман Николаевич
  • Васильев Алексей Вениаминович
  • Быков Алексей Владимирович
  • Кожевников Дмитрий Андреевич
  • Егоров Юрий Дмитриевич
RU2620451C1
Способ определения местоположения точечного источника гамма-излучения на местности 2015
  • Садовников Роман Николаевич
  • Кулагин Иван Юрьевич
  • Кожевников Дмитрий Андреевич
  • Васильев Алексей Вениаминович
  • Глухов Юрий Александрович
  • Румянцев Сергей Олегович
RU2620449C2
СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ 2000
  • Соловых С.Н.
  • Алимов Н.И.
  • Перевозчиков А.Н.
  • Глухов Ю.А.
  • Андриевский Э.Ф.
RU2195005C2
Автоматизированный радиационный мониторинг окружающей среды в районе объекта, содержащего радиоактивные вещества 1990
  • Петров Юрий Витальевич
  • Рымаренко Александр Иосифович
  • Фрунзе Владимир Владимирович
SU1716457A1
Способ повышения достоверности воздушной радиационной разведки радиоактивно загрязненной местности 2019
  • Кожевников Дмитрий Андреевич
RU2698499C1
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ЗАГРЯЗНЕНИЯ РАДИОНУКЛИДАМИ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ В СЛЕДЕ РАДИОАКТИВНОГО ВЫБРОСА РАДИАЦИОННО-ОПАСНЫХ ПРЕДПРИЯТИЙ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Елохин Александр Прокопьевич
  • Рау Дмитрий Федорович
  • Пархома Павел Александрович
  • Жилина Мария Владимировна
RU2388018C1
Способ автоматизированного выявления границ зон радиоактивного загрязнения местности с использованием беспилотного летательного аппарата 2018
  • Кожевников Дмитрий Андреевич
  • Васильев Алексей Вениаминович
  • Быков Алексей Владимирович
  • Кулагин Иван Юрьевич
RU2694465C1
Способ определения безопасного маршрута преодоления участка радиоактивно загрязненной местности 2021
  • Иноземцев Валерий Александрович
  • Бавшенко Тимур Олегович
  • Садовников Роман Николаевич
  • Абаева Ксения Сергеевна
  • Кожевников Дмитрий Андреевич
RU2763385C1
СПОСОБ ВЕДЕНИЯ ВОЗДУШНОЙ РАДИАЦИОННОЙ РАЗВЕДКИ МЕСТНОСТИ 2013
  • Садовников Роман Николаевич
  • Фролов Дмитрий Владимирович
RU2554618C1
Способ воздушной радиационной разведки радиоактивно загрязненной местности с лесным покровом 2019
  • Кожевников Дмитрий Андреевич
RU2732471C1

Иллюстрации к изобретению RU 2 604 695 C1

Реферат патента 2016 года СПОСОБ ОЦЕНКИ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ НОСИМЫМ ИЗМЕРИТЕЛЕМ МОЩНОСТИ ДОЗЫ НА РАДИОАКТИВНО ЗАГРЯЗНЕННОЙ МЕСТНОСТИ В ПЕРИОД ФОРМИРОВАНИЯ СЛЕДА РАДИОАКТИВНОГО ОБЛАКА

Изобретение относится к области измерения параметров ионизирующего излучения. Способ оценки достоверности результатов измерения носимым измерителем мощности дозы на радиоактивно загрязненной местности в период формирования следа радиоактивного облака заключается в том, что определяют факт радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы при ведении радиационной разведки пешим порядком, при этом для выявления факта радиоактивного загрязнения блока детектирования проводят два измерения мощности дозы на высотах 0,1 и 3 метра над радиоактивно загрязненной местностью и сравнивают отношение полученных показаний с контрольным числом, равным 1,7, которое соответствует случаю, когда детекторный блок не загрязнен радиоактивными веществами; в случае наличия загрязненности блока детектирования радиоактивными веществами полученное отношение будет меньше контрольного значения. Технический результат - упрощение способа измерения параметров ионизирующего излучения. 2 ил., 2 табл.

Формула изобретения RU 2 604 695 C1

Способ оценки достоверности результатов измерения носимым измерителем мощности дозы на радиоактивно загрязненной местности в период формирования следа радиоактивного облака, заключающийся в определении факта радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы при ведении радиационной разведки пешим порядком, отличающийся тем, что для выявления факта радиоактивного загрязнения блока детектирования проводят два измерения мощности дозы на высотах 0,1 и 3 метра над радиоактивно загрязненной местностью и сравнивают отношение полученных показаний с контрольным числом, равным 1,7, которое соответствует случаю, когда детекторный блок не загрязнен радиоактивными веществами; в случае наличия загрязненности блока детектирования радиоактивными веществами полученное отношение будет меньше контрольного значения.

Документы, цитированные в отчете о поиске Патент 2016 года RU2604695C1

СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО ЗАГРЯЗНЕНИЯ И УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ С ЗАГРЯЗНЕННОЙ ПОВЕРХНОСТИ 2009
  • Богатов Сергей Александрович
  • Боровой Александр Александрович
  • Абалин Сергей Сергеевич
  • Барковский Борис Васильевич
RU2408003C1

RU 2 604 695 C1

Авторы

Садовников Роман Николаевич

Кожевников Дмитрий Андреевич

Румянцев Сергей Олегович

Кулагин Иван Юрьевич

Федосеев Василий Михайлович

Лукоянов Дмитрий Иванович

Даты

2016-12-10Публикация

2015-10-06Подача