Изобретение относится к проектированию и управлению сложных наземно-подземных объектов, например установок предварительного сброса воды (УПСВ).
Известен способ получения, обработки и отображения геопространственных данных в формате 3D с применением технологии лазерного сканирования, при котором с помощью лазерного сканера выполняют сканирование заданной территории с привязкой к системе координат, создают интерфейсную подсистему подготовки и постоянного обновления геопространственных данных в формате 3D и передают в нее результаты сканирования (сканы) и получают цифровую метрическую точечную модель заданной территории в формате 3D, создают административную подсистему в формате 3D с возможностью управления, обработки, анализа, интерпретации и хранения полученных геопространственных данных в формате 3D, создают систему поиска нужного фрагмента территории (объекта) и доступа к нему, получают через интернет нужный фрагмент территории в виде цифровой метрической точечной модели заданной территории в формате 3D на рабочий компьютер, обрабатывают этот фрагмент средствами, размещенными на сервере геопространственных данных в формате 3D или в собственных программах, получают результат для дальнейшего использования в виде цифровой метрической и визуальной информации в формате 3D. (Пат. 2591173 Российская Федерация, МПК G06Т 15/00, G06Т 17/05, G06Т 19/05. Способ получения, обработки и отображения геопространственных данных в формате 3d с применением технологии лазерного сканирования; З: №2015123125/08, заявл. 16.06.2015., Опубл. 10.07.2015 Бюл. №19).
Этот способ достаточно сложный и не обеспечивает оперативное и долгосрочное управление подземными частями объекта соответственно, объектом в целом, кроме того, способ не учитывает геологическую составляющую наблюдаемого объекта.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ создания интегральной геологической модели для многоцелевого анализа природно-техногенных систем, заключающийся в том, что собирают геологические, геофизические и географические данные, создают базы данных по различным средам с разной сетью опробования и регистрации, строят монокомпонентные модели 3D, создают единый грид для всех сред, проводят статистический анализ матрицы значений и создают интегральную модель геологического пространства, отличающийся тем, что при построении монокомпонентных моделей 3D дополнительно проводят их верификацию на соответствие реальной геологической обстановке путем бурения скважин, а при создании грида увеличивают или уменьшают количество ячеек соответственно увеличению или генерализации информации, а при создании интегральной модели геологического пространства определяют периодичность проведения мониторинговых измерений для создания постоянно действующей модели. (Пат. 2425421 Российская Федерация, МПК G06Т 17/00, G06Т 17/05. Способ создания интегральной геологической модели для многоцелевого анализа природно-техногенных систем; З: №2009143871/28, заявл. 26.11.2009, Опубл. 27.07.2011 Бюл. №21).
Этот способ также не обеспечивает объем информации по объекту в целом, необходимый для оперативного управления объектом в течение всего рабочего времени.
Технический результат заключается в повышении безопасности эксплуатации объекта за счет обеспечения доступности и достоверности информации по эксплуатации объекта в режиме постоянного доступа на всех стадиях жизненного цикла, повышения качества проектных решений, возможности осуществлять оперативное принятие решений при ликвидации аварийных ситуаций.
Указанный технический результат достигается тем, что в способе BIM проектирования наземно-подземного объекта, включающем лазерное сканирование наземного объекта с последующим созданием его 3D модели, первоначально определяют местоположение подземного объекта, затем производят бурение скважин с отбором проб грунта, по которым определяют их состав и физико-механические свойства, по полученным данным определяют геологическое строение массива пород, после чего создают подземную и геологическую 3D модели объекта, затем формируют информационную базу объекта в целом, позволяющую управлять объектом, то есть создают BIM модель.
Местоположение подземного объекта определяют, либо трассоискателями, либо сканированием, например электромагнитным, либо любым другим способом.
Информационная база объекта включает свойства элементов объекта, документы и планируемые работы.
Реализацию способа представляем на примере разработки газонефтяного месторождения, его отдельной части, включающей сборники нефти и подходящие к ним трубопроводы. Таким образом, наземная часть представлена емкостями нефтехранилища, а подземная - трубопроводами (нефтепроводами), подходящими к емкостям нефтехранилища.
Сущность изобретения поясняется чертежами, где на фиг. 1 - наземная часть объекта (нефтехранилища); на фиг. 2 - документы оборудования; на фиг. 3 - геологическая модель на фиг. 4 - пример использования BIM технологии (3D модель) для планирования работ, результаты обследование емкости,.
На чертежах: 1 - сборники нефти, 2 - перечень атрибутов управления наземной части; 3 - подземные трубопроводы, 4 - оперативные данные корректировки объекта, 5 - насыпной грунт, 6 - почвенно-растительный слой, 7 - глина, 8 - аргиллит.
Способ осуществляется следующим образом.
Для обеспечения качественного проектирования любого технического объекта и его последующей эксплуатации необходимо иметь возможность оперативно использовать любую полученную техническую информацию по объекту и соответственно вносить корректирующие данные.
Для получения таких данных первоначально производят сканирование существующей наземной (нефтесборники 1), а затем подземной части (трубопроводы 3) объекта (фиг. 1). Сканирование объекта осуществляют в 3D координатах х, у, z с последующим созданием его 3D модели. Местоположение подземного объекта определяют в тех же координатах лазерным сканированием или любым другим способом (фиг. 1, 2). Одновременно создают BIM-модель наземной части 2, которая позволяет управлять осуществлять планирование и корректировку развития этой части объекта.
В границах объекта производят бурение скважин с отбором проб грунта, по которым определяют их состав и физико-механические свойства. По полученным данным определяют геологическое строение массива пород, и создают геологическую 3D модель, в которую вписывают подземную часть объекта (фиг. 3).
Объемная геологическая модель (далее ОГМ) в предлагаемом примере состоит из четырех слоев: насыпного грунта 5, почвенно-растительного слоя 6, глины 7 и аргиллита 8, которые визуализируются как поверхности (на фиг. 3 мы видим кровли геологических слоев, в данном случае - инженерно-геологических элементов). Использование ОГМ, например в программах CadLib Модель и Архив и Model Studio CS, позволяют ознакомиться с геологическим строением территории, в частности, выявить участки распространения слабых грунтов (например, с целью выбора оптимального места заложения проектируемых зданий и сооружений), построить инженерно-геологические разрезы, оценить расположение горизонтов подземных вод, получить нормативные и расчетные характеристики грунтов (фиг. 3).
Создаваемая геологическая 3D модель, учитывая физико-механические свойства окружающей подземную часть объекта, позволяет оперативно и качественно менять условия проектирования и эксплуатации подземной части объекта. Так появляется возможность подобрать в процессе проектирования наиболее подходящие по размеру оборудование (фиг. 2), например фундаменты.
После этого создают ВГМ-модель объекта в целом (наземной, подземной и геологической частей) с перечнем атрибутов, которая является информационной базой объекта в целом.
Информационная база объекта включает свойства элементов объекта, документы и планируемые работы, позволяющие управлять объектом.
При проектировании (планировании) ремонта, реконструкции и других работах на объекте в информационную базу вносят изменения, которые позволяют оценить и соответственно изменять состояние объекта на всех стадиях жизненного цикла, например обследование реального состояния элементов объекта (фиг. 4) и последующее принятие решения о ремонте.
Таким образом, BIM-модель объекта обеспечивает уровень детализации объекта и включает его атрибуты, например свойства оборудования, документы по оборудованию, планы работ по объекту (оборудованию) и т.д. по всем этапам планирования и эксплуатации объекта в целом.
Использование предполагаемого изобретения позволяет повысить безопасность эксплуатации объекта за счет обеспечения доступности и достоверности информации по эксплуатации объекта в режиме постоянного доступа на всех стадиях жизненного цикла, повышения качества проектных решений, возможности осуществлять оперативное принятие решений при ликвидации аварийных ситуаций.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ, ОБРАБОТКИ И ОТОБРАЖЕНИЯ ГЕОПРОСТРАНСТВЕННЫХ ДАННЫХ В ФОРМАТЕ 3D С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ ЛАЗЕРНОГО СКАНИРОВАНИЯ | 2015 |
|
RU2591173C1 |
Способ получения, обработки, отображения и интерпретации геопространственных данных для кластеризации неоднородности техногенно измененных территорий | 2022 |
|
RU2806406C1 |
Способ автоматического мониторинга состояния асбестоцементных сбросных трубопроводов закрытой оросительной системы | 2021 |
|
RU2762365C1 |
Устройство для автоматического мониторинга состояния асбестоцементных сбросных трубопроводов закрытой оросительной системы | 2021 |
|
RU2762362C1 |
Способ построения трехмерной векторной карты по цифровой модели и снимку местности | 2017 |
|
RU2680758C1 |
СПОСОБ ПОСТРОЕНИЯ КАРТЫ ЭКЗОГЕННЫХ ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ МЕСТНОСТИ ВДОЛЬ ТРАССЫ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА | 2015 |
|
RU2591875C1 |
Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования | 2018 |
|
RU2698411C1 |
СПОСОБ ПОИСКА ПОДЗЕМНЫХ ВОД | 2011 |
|
RU2465621C1 |
Способ геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах с применением технологии лазерного сканирования | 2018 |
|
RU2680978C1 |
Способ проведения геотехнического мониторинга линейных сооружений и площадных объектов на основе воздушного лазерного сканирования | 2017 |
|
RU2655956C1 |
Изобретение относится к области 3D моделирования. Технический результат заключается в расширении арсенала технических средств. Способ создания 3D модели наземно-подземного объекта, включающий лазерное сканирование наземного объекта в координатах его местоположения с последующим его созданием 3D модели, определение местоположения подземной части объекта в тех же координатах, осуществление бурения скважин с отбором проб грунта, по которым определяют их состав и физико-механические свойства, по полученным данным определяют геологическое строение массива пород и создают 3D модель геологического пространства, в которую вписывают подземную часть объекта в тех же координатах, что и наземная часть, после чего создают или корректируют 3D модель объекта в наземной и подземной частях с учетом данных 3D модели геологического пространства. 1 з.п. ф-лы, 4 ил.
1. Способ создания 3D модели наземно-подземного объекта, включающий лазерное сканирование наземного объекта в координатах его местоположения с последующим его созданием 3D модели, определение местоположения подземной части объекта в тех же координатах, осуществление бурения скважин с отбором проб грунта, по которым определяют их состав и физико-механические свойства, по полученным данным определяют геологическое строение массива пород и создают 3D модель геологического пространства, в которую вписывают подземную часть объекта в тех же координатах, что и наземная часть, после чего создают или корректируют 3D модель объекта в наземной и подземной частях с учетом данных 3D модели геологического пространства.
2. Способ по п. 1, отличающийся тем, что местоположение подземного объекта определяют либо трассоискателем, либо сканированием.
СПОСОБ ПОЛУЧЕНИЯ, ОБРАБОТКИ И ОТОБРАЖЕНИЯ ГЕОПРОСТРАНСТВЕННЫХ ДАННЫХ В ФОРМАТЕ 3D С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ ЛАЗЕРНОГО СКАНИРОВАНИЯ | 2015 |
|
RU2591173C1 |
СПОСОБ ТРЁХМЕРНОГО (3D) КАРТОГРАФИРОВАНИЯ | 2014 |
|
RU2562368C1 |
WO 1997038330 A1, 16.10.1997 | |||
CN 102967481 A, 13.03.2013 | |||
CN 102867077 A, 09.01.2013 | |||
US 20090024326 A1, 22.01.2009. |
Авторы
Даты
2019-09-04—Публикация
2018-07-10—Подача