Изобретение относится к области машиностроения, в частности к двигателям внутреннего сгорания, а именно к системам выпуска отработавших газов, системам питания дизелей жидким и газообразным топливом, в частности сжиженным углеводородным газом и может использоваться в системах питания двигателей внутреннего сгорания работающих на газомоторных топливах, таких как сжиженные углеводородные топлива, природный газ и другие.
Известна система автоматического управления подачей активатора в дизель, содержащая устройство для подачи активатора и распылитель. Распылитель размещен во впускном трубопроводе дизеля и управляется электромагнитом, связанным с источником питания. Система содержит также электронный блок управления и датчики температуры охлаждающей жидкости и допустимого снижения напряжения, электрически соединенные с источником питания, а также датчик частоты вращения коленчатого вала и датчик положения рейки топливного насоса высокого давления. Информативные сигналы от датчиков поступают через электронный блок управления в электромагнит распылителя с периодичностью и продолжительностью, зависящими от скоростного и нагрузочного режимов работы двигателя. Устройство для подачи активатора выполнено в виде электрического насоса, соединенного с электронным блоком управления. Распылитель и электромагнит объединены в один узел и представляют собой электромагнитную форсунку. Подключение электронного блока управления и электрического насоса к источнику питания происходит автоматически по сигналам датчика температуры охлаждающей жидкости и датчика допустимого снижения напряжения соответственно при температуре 50+5°С и напряжении 9-14 В, а отключение - при температуре 95+5°С и напряжении ниже 9 В (патент РФ 2273750, МПК F 02 D 19/12, F 02 M 43/00, 2006).
Известная система не обеспечивает фазного перехода активатора - воды из жидкого состояния в парообразное, что не позволяет использовать в качестве активатора воду, при этом использование воды в качестве активатора, позволяет исключить детонацию на всех режимах работы газодизельных двигателей и снижает выбросы вредных веществ с отработавшими газами.
Известно устройство для подачи воды в двигатель внутреннего сгорания содержащее емкость с водой, поплавковую камеру, трубопроводы подачи воды и распылители воды, присоединенные к карбюратору. Распылители воды инжекторного типа содержат сопло Лаваля с боковыми воздушными отверстиями и подключены по одному к горловинам диффузоров первичной и вторичной смесительных камер и два распылителя за дроссельной заслонкой первичной смесительной камеры карбюратора, трубопроводы которых содержат электромагнитные клапаны воды. Один из клапанов электрически связан с топливным электромагнитным клапаном холостого хода, а другой - с концевым выключателем, приводимым в действие рычагом привода топливного ускорительного насоса карбюратора (патент РФ 2260144, МПК F 02 M 25/022, 2017).
Недостатком известного устройства является его применимость только в карбюраторных двигателях, отсутствие возможности фазного перехода состояния воды. Поступление водного раствора в карбюратор непосредственно через патрубок не производит качественного распыла и приводит к неустойчивой работе двигателя. Отсутствие автоматического регулирования соотношения воды в топливе.
Наиболее близким техническим решением к предлагаемому является способ снижения содержания вредных ингредиентов в отработавших газах дизельного двигателя заключающийся в предварительном приготовлении жидкого активатора, подающегося через наконечник-дозатор во впускной трубопровод дизельного двигателя, при этом оптимизируется состав аэрозольной смеси активатора с воздухом. В качестве активатора используют следующий состав:
- перекись водорода - 23-53%
- алифатические спирты - 5-10%
- антикоррозионная присадка -0,1-0,3%
- стабилизирующее вещество - 0,1-0,2%
- остальное - дистиллированная вода.
При этом указанный активатор обрабатывают в устройстве в виде аэрозольного генератора, работающего в трех режимах: распылительном, комбинированном и барботажном, в зависимости от литража дизеля. В аэрозольном генераторе размещен картридж-поплавок, обеспечивающий оптимальный состав аэрозоли в зависимости режимов работы ДВС за счет постоянного уровня активатора в картридже. Генератор связан гибким трубопроводом с наконечником-дозатором, имеющим насадку-рассекатель, размещенную с зазором в сужающемся в направлении потока воздуха кожухе, закрепленном во впускном воздуховоде. Изменение характеристик турбулирования активатора осуществляется регулированием подачи воздуха через барботажную трубку и электромагнитный клапан и изменением пропускной способности нижнего патрубка трехходового крана. Используя варианты формы насадки-рассекателя, повышают дисперсность аэрозоли в зависимости от типа ДВС. (патент РФ 2510469, МПК F02M43/00,F02M25/00,F02D19/12. 2014)
Недостатком известного способа является сложность подготовки и высокая стоимость активатора, необходимость установки устройства обработки активатора, отсутствие возможности фазного перехода состояния активатора.
Технической задачей изобретения является улучшение топливной экономичности, исключение явления детонации на всех режимах работы двигателя в газодизельном режиме, упрощение конструкции, повышение надежности, снижение токсичности отработавших газов двигателя.
Поставленная техническая задача достигается тем, что устройство подачи воды в газодизель содержащее емкость с водой, трубопроводы подачи воды и распылители воды инжекторного типа, согласно изобретению, снабжено охладителем-смесителем, с жидкостным контуром охлаждения и контуром рециркулируемых отработавших газов, конверсивной камерой, выпускными впускным коллекторами двигателя, дозирующим устройством регулирования подачи парогазовой смеси и блоком управления.
Изобретение объясняется чертежом, на котором представлено устройство подачи воды в газодизель.
Устройство подачи воды в газодизель содержит емкость 1 с водой, трубопроводы 2 подачи воды и распылители 3 воды инжекторного типа установленные в охладитель-смеситель 4, имеющий контур 5 охлаждения, в котором циркулирует охлаждающая жидкость и контур 6 рециркулируемых отработавших газов, который обеспечивает охлаждение перепускаемых из выпускного коллектора во впускной коллектор двигателя отработавших газов. Впрыск воды осуществляется в поток горячих отработавших газов по ходу движения газов в конверсивной камере 7, где вода переходит из жидкого фазного состояния в парообразное. Далее пар смешивается с отработавшими газами в каналах 8 охладителя-смесителя 4,образуя паро-газовую смесь, при этом вода дополнительно охлаждает отработавшие газы, а управление подачей воды для достижения необходимой концентрации парогазовой смеси (2-7% содержания пара) и регулирование подачи парогазовой смеси дозирующим устройством 9 во впускной коллектор двигателя (до 50% воздуха), обеспечивается блоком управления 10,который может быть выполнен в качестве отдельного устройства или интегрирован в блок управления двигателем. Регулирование осуществляется по сигналам от датчиков двигателя в зависимости от скоростных и нагрузочных режимов работы двигателя.
Устройство позволяет улучшить топливную экономичность, обеспечивает бездетонационную работу газодизельного двигателя, повысить надежность системы на всех скоростных и нагрузочных режимах работы тепловых поршневых двигателях работающих на газе.
Устройство подачи воды в газодизель работает следующим образом.
Добавление паров воды в рабочую смесь в количестве 2...7% на данных режимах снижает теплонапряженность цилиндро-поршневой группы и скорость распространения пламени, что позволяет исключить детонацию на режимах от 82% до номинальной мощности, а так же на корректорной ветви. Система подачи воды интегрирована в систему рециркуляции, вода впрыскивается в струю горячих отработавших газов, температура которых составляет 200...800оС, где испаряется и далее пар с отработавшими газами поступает во впускной коллектор.
Отбор отработавших газов производится в выпускном трубопроводе, на минимальном расстоянии от выпускного коллектора двигателя, далее отработавшие газы поступают в соответствующий контур охладителя-смесителя 4, где в конверсивную камеру 7 в струю раскаленных газов распылителями 3 впрыскивается 2...7% воды от количества отработавших газов. Количество впрыскиваемой воды определяется блоком управления 10 подачи топлива, пропорционально расходу топлива и величине нагрузки на двигатель увеличивая подачу воды при увеличении нагрузки. В конверсивной камере 7охладителя-смесителя 4 вода испаряется и далее в каналах 8 смесителя-охладителя 4 пар смешивается с отработавшими газами, одновременно охлаждая его. Подготовленная парогазовая смесь через регулируемый блоком управления 10 запорный элемент (не показан) поступает во впускной трубопровод двигателя внутреннего сгорания. Охладитель-смеситель 4 имеет контур 5 охлаждения, в котором циркулирует охлаждающая жидкость, и который может быть выполнен независимым или включен в систему охлаждения двигателя, обеспечивающую снижение температуры отработавших газов ниже 100 С. Вода поступает в распылители 3 из отдельной емкости для воды оснащенной насосом с регулятором давления по водяным трубопроводам 2. Регулировка количества рециркулируемых газов осуществляется регулируемым запорным элементом под управлением блока управления 10 подачи топлива двигателя.
Сгорание пропан-бутановых смесей в цилиндре двигателя на режимах работы более 50% от максимальной мощности и на корректорной ветви сопровождается детонацией. Использование системы рециркуляции отработавших газов позволяет повысить порог возникновения детонации и обеспечить без детонационное сгорание пропан-бутановой смеси на режимах 50%...82% от максимальной мощности, при запальной дозе 30%. Обеспечение перепуска 40...50% отработавших газов на режимах 82...95% мощности позволяет исключить детонацию при запальной дозе 40%, дальнейшее увеличение мощности до номинальной влечет за собой существенное увеличение запальной дозы до 45..60%. Применение изобретения, с для снижения объема запальной дозы до 30 %, обеспечивает испарение водяного заряда за счет тепловой энергии отработавших газов и перепуск отработавших газов до 50%, с паровым зарядом во впускной коллектор, что обеспечивает без детонационное сгорание пропан-бутановой смеси на всех скоростных и нагрузочных режимах работы двигателя, при запальной дозе 30%.
В лаборатории «Двигателей и применения альтернативных топлив» ФГБНУ ФНАЦ ВИМ изготовлен и испытан опытный образец устройства подачи воды в газодизель.
Результаты испытаний показали, что предложенное устройство подачи воды в газодизель обеспечивает исключение явления детонации на всех режимах работы двигателя в газодизельном режиме, имеет более простую конструкцию, высокую надежность, улучшает топливную экономичность двигателя и снижает токсичность отработавших газов двигателя.
название | год | авторы | номер документа |
---|---|---|---|
Система рециркуляции газодизельного двигателя | 2018 |
|
RU2697600C1 |
СИСТЕМА ПИТАНИЯ ГАЗОДИЗЕЛЯ С ЭЛЕКТРОННЫМ УПРАВЛЕНИЕМ | 2023 |
|
RU2809886C1 |
Способ организации рабочего процесса газодизельного двигателя | 2018 |
|
RU2700866C1 |
Система питания газодизеля | 2015 |
|
RU2617017C1 |
СПОСОБ ПОДАЧИ ГОРЮЧЕГО ГАЗА И ДИЗЕЛЬНОГО ТОПЛИВА В РАБОЧИЕ ЦИЛИНДРЫ ГАЗОДИЗЕЛЯ | 2021 |
|
RU2772450C1 |
Система питания жидким газомоторным топливом газодизельного двигателя | 2021 |
|
RU2779507C1 |
Система питания газодизеля | 1989 |
|
SU1768786A1 |
СПОСОБ РАБОТЫ СИЛОВОЙ УСТАНОВКИ КОЛБЕНЕВА С ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ И ЕЕ УСТРОЙСТВО | 1992 |
|
RU2100628C1 |
СПОСОБ ПОДАЧИ И ДОЗИРОВАНИЯ ТОПЛИВА В ГАЗОДИЗЕЛЕ И УСТРОЙСТВО ДЛЯ ПОДАЧИ И ДОЗИРОВАНИЯ ТОПЛИВА | 1998 |
|
RU2137937C1 |
ГАЗОДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С СИСТЕМОЙ УПРАВЛЕНИЯ И 16-ПОЗИЦИОННЫМ КОНТРОЛЛЕРОМ | 2021 |
|
RU2779213C1 |
Изобретение может быть использовано в двигателях внутреннего сгорания. Предложенное устройство подачи воды в газодизель содержит емкость с водой 1, трубопроводы подачи воды 2 и распылители 3 воды инжекторного типа. Устройство снабжено охладителем-смесителем 4, в который установлены распылители 3. Охладитель-смеситель имеет контур охлаждения 5, в котором циркулирует охлаждающая жидкость и контур рециркулируемых отработавших газов 6, который обеспечивает охлаждение перепускаемых из выпускного коллектора во впускной коллектор двигателя отработавших газов. Впрыск воды осуществляется в поток горячих (более 120°С) отработавших газов в конверсивной камере 7, где вода переходит из жидкого фазного состояния в парообразное, далее пар смешивается с отработавшими газами в каналах охладителя-смесителя 8, образуя парогазовую смесь, при этом вода дополнительно охлаждает отработавшие газы. Управление подачей воды и регулирование подачи парогазовой смеси осуществляется дозирующим устройством 9 по сигналам блока управления 10. Регулирование осуществляется по сигналам от датчиков двигателя в зависимости от скоростных и нагрузочных режимов работы двигателя. Устройство служит для улучшения топливной экономичности, обеспечения бездетонационной работы, снижения токсичности газодизельного двигателя. 1 ил.
Устройство подачи воды в газодизельный двигатель, содержащее емкость с водой, трубопроводы подачи воды и распылители воды инжекторного типа, отличающееся тем, что устройство снабжено охладителем-смесителем с жидкостным контуром охлаждения и контуром рециркулируемых отработавших газов, конверсивной камерой, выпускным и впускным коллекторами двигателя, дозирующим устройством регулирования подачи парогазовой смеси и блоком управления.
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С САМОВОСПЛАМЕНЕНИЕМ | 2013 |
|
RU2627762C2 |
УПРАВЛЯЮЩЕЕ УСТРОЙСТВО ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2013 |
|
RU2618158C1 |
US 9790852 B2, 17.10.2017 | |||
US 9631580 B2, 25.04.2017 | |||
US 9188050 B2, 17.11.2015 | |||
US 20170114738 A1, 27.04.2017. |
Авторы
Даты
2019-09-11—Публикация
2018-12-20—Подача