Способ исследования макета ламинаризированной поверхности Российский патент 2019 года по МПК G01M9/00 B64C21/02 B64D47/00 

Описание патента на изобретение RU2701291C1

Изобретение относится к области авиационной и космической техники, может найти применение в натурных и модельных испытаниях различных летательных аппаратов или их отдельных элементов.

Одним из путей существенного повышения аэродинамического качества магистральных пассажирских самолетов является снижение сопротивления трения, которое составляет около 50% от общего сопротивления. Поскольку сопротивление трения при турбулентном обтекании существенно возрастает, перспективной авиационной технологией направленной на снижение сопротивления, является ламинаризация обтекания. Известны различные устройства, которые обеспечивают уменьшение сопротивления тел при их движении в газовой или жидкостной средах путем затягивания ламинарно-турбулентного перехода (ЛТП), т.е. увеличения части поверхности тела, обтекаемой ламинарным пограничным слоем за счет сокращения протяженности турбулентного слоя. Для достижения этой цели используются разные пути: отсос, тепловой метод и т.д. В период до середины 90-х годов проводились работы по созданию активных систем ламинаризации обтеканием самолета с помощью отсоса пограничного слоя и оценки их эффективности в условиях трубного эксперимента.

Известен способ управления пограничным слоем (патент RU №2081791, МПК В64С 21/02, 1997 г.), объектом исследования является крыло летательного аппарата содержащее отдельные элементы, представляющие в сечении аэродинамические профили, которые образуют его верхнюю поверхность с зазором между ними и крылом. Такая форма профиля крыла предлагается для формирования противотока в щели, который должен уменьшать толщину пограничного слоя в задней части крыла и увеличивать площадь разрежения. Недостатком данного устройства является то, что отсос пограничного слоя в задней части крыла сопряжен со значительным возмущением основного потока, возможен даже его отрыв в результате вдува воздуха в передней части крыла, поскольку этот вдув производится под значительным углом к направлению основного потока в месте наибольшего разрежения, где еще не сформировался пограничный слой. Поэтому достижение положительного суммарного эффекта от такого рода управления пограничным слоем может оказаться проблематичным.

Известно техническое решение, (патент US 6682022, МПК В64С 21/02, 2004), базирующееся на использовании микроперфорации, выполненной по специальной технологии. В данном способе управление пограничным слоем при обтекании какого-либо тела осуществляют в результате связи внутренней полости через микропоры с распределенным по поверхности тела давлением. При этом как отсос пограничного слоя, так и его вдув производят в направлении нормали к поверхности тела. Уменьшение пограничного слоя, вызванное его отсосом ниже по течению, может быть перекрыто его ростом, поскольку нормальный вдув выше по течению приведет к увеличению пограничного слоя, который при положительном градиенте давления ускоренно нарастает. Поэтому эффективность такого способа управления пограничным слоем в случае обтекания аэродинамического профиля требует дополнительных исследований.

Известно, что в полете проводилось изучение обтекания отсека крыла, поставленного вертикально на самолете ДБ-3 с целью получения характеристик профиля в условиях натурной турбулентности потока (Г.С. Бюшгенс, Е.Л. Бедржицкий, «ЦАГИ-центр авиационной науки», Изд-во Москва «НАУКА», стр. 59-60, 1993).

Используемый самолет не обладал достаточной скоростью полета, при исследуемых режимах не мог обеспечить подобие обтекания с натурными числами Рейнольдса.

Задачей предлагаемого изобретения является разработка способа исследования макета ламинаризированной поверхности и оценка его эффективности в условиях как трубного эксперимента, так и летного эксперимента.

Техническим результатом является проведение испытаний макета ламинаризированной поверхности с натурной перфорацией обводообразующих панелей, обслуживаемых системой ламинаризации, отвечающий требованиям аэродинамического подобия натурному полету по числу Рейнольдса.

Решение задачи и технический результат достигаются тем, что в способе исследования макета ламинаризированной поверхности, снабженной активной системой ламинаризации, содержащий микроперфорированную поверхность и систему отсоса пограничного слоя, заключающемся в установке макета на самолете-носителе и проведении испытательного полета, макет ламинаризированной поверхности размещают на верхней поверхности самолета-носителя, имеющего интегральную аэродинамическую компоновку крыло-фюзеляж, в вертикальной плоскости симметрии самолета-носителя в позиции, совпадающей с его центром масс, проводят испытательный полет в диапазоне скоростей крейсерского полета магистральных пассажирских самолетов на высотах от 3,0 км до 11,0 км, обеспечивают стабильность потока на макете и подобие обтекания при натурных числах Рейнольдса за счет достижения крейсерской скорости, равной числу 0,7÷0,85 М.

В качестве самолета-носителя используют летающую лабораторию, которая обеспечивает расширенные возможности проведения измерений и обеспечения требуемых параметров полета.

На фигуре 1 показан один из вариантов модели киля с перфорацией, показавший повышение аэродинамического качества на 4% при трубных испытаниях.

На фигуре 2 показан результат перфорации образцов при помощи лазерной прошивки с импульсом 10-7 сек.

На фигуре 3 показан макет ламинированой поверхности (киль), установленный на летающую лабораторию.

На фигуре 4 показан монитор с повышенной информативностью для фиксации результатов эксперимента, установленный на летающей лаборатории.

Исследуемый макет ламинаризированной поверхности 1 является перфорированной моделью киля, отвечающей требованиям аэродинамического подобия натурному полету величиной числа Рейнольдса. Рациональный размах макета для исследований в многорежимной аэродинамической трубе с реализованным повышением давления в рабочей части для обеспечения аэродинамического подобия, отвечающий требованиям аэродинамического подобия натурному полету составляет ~ 2,5 м. При исследованиях макета 1 в аэродинамической трубе, микроперфорированный макет устанавливают на универсальный силовой узел 2. В ходе экспериментов были подтверждены ранее полученные результаты, показавшие повышение аэродинамического качества на 4% при трубных испытаниях (см. фиг. 1, 2). Макет киля 1 с микроперфорацией 3 (см. фиг 2, 3), был подготовлен для летного эксперимента на летающей лаборатории 4 (см. фиг 3, 4). В летных экспериментах используют в качестве самолета-носителя летающую лабораторию, разрабатываемую для исследования характеристик самолета перед организацией серийного производства, обеспечивают тем самым расширенные возможности проведения измерений и обеспечения требуемых параметров полета. Существенным требованием к исследованию ламинаризации в летном эксперименте является обеспечение скоростей, соответствующих крейсерскому полету магистральных пассажирских самолетов 0,7÷0,85 М. Использование изготовленного макета ламинаризированной поверхности 1 достаточно большого размера с микроперфорацией 3 обводооразующих панелей, обслуживаемых системой ламинаризации отвечает всем требованиям аэродинамического подобия натурному полету. Макет ламинаризированной поверхности киля 1 с микроперфорацией 3 обводооразующих панелей, устанавливают в вертикальной плоскости симметрии самолета-носителя 4, в позиции совпадающей с центром масс, в стабилизированном потоке, реализуемом на верхней поверхности носителя, установка в потоке идентичная, при испытаниях в аэродинамической трубе размещение макета 1 между килями в плоскости симметрии и центре масс обеспечило сохранение характеристик устойчивости и управляемости самолета-носителя, энерговооруженностью самолета-носителя обеспечивают проведение испытательных полетов в диапазоне скоростей крейсерского полета магистральных пассажирских самолетов (0,7-0,85)М, причем на высотах от 3,0 км до 11,0 км, Для подтверждения (валидации) результатов трубного эксперимента, а также получения наиболее достоверных оценок эффективности и рациональных параметров системы ламинаризации, проведены необходимые исследования микроперфорированного макета киля 1 в условиях летного эксперимента на различных высотах. Проведен ряд испытательных полетов в диапазоне скоростей крейсерского полета магистральных пассажирских самолетов 0,7-0,85 М, причем на высотах от 3,0 км до 11,0 км, тем самым обеспечивают для ламинаризированной поверхности киля с размахом 2,5 м подобие обтекания натурным крыльям в исследовательских полетах на малых высотах, оперением - на средних высотах, трубному эксперименту - на больших высотах. Характеристики устойчивости и управляемости, характерные для маневренных самолетов обеспечивают, при установленном макете ламинаризированной поверхности, установившийся полет с углами рыскания до ±3°, которые обеспечивают моделирование угла атаки в крейсерском полете для макета киля 1 ламинаризированной поверхности.

Использование летающей лаборатории 4 (фиг. 3) обеспечило проведение установившегося горизонтального полета со скоростями 0,7÷0,85 М с углом атаки не превышающим 2,5°; выполнение горизонтального полета в ускоренном диапазоне скоростей на высотах 3-11 км, возможность полета с постоянным углом рысканья (в горизонтальной плоскости) ±3°, результаты экспериментов фиксировались специальной аппаратурой, отображались на мониторе с повышенной информативностью 5 в режиме реального времени, и проводилась фиксация результатов эксперимента в памяти компьютера.

Результаты летных экспериментов по исследованию ламинаризации обтекания микроперфорированного макета киля подтвердили результаты, показавшие повышение аэродинамического качества на 4% как и при трубных экспериментах.

Похожие патенты RU2701291C1

название год авторы номер документа
Сверхзвуковой самолет 2020
  • Башкиров Игорь Геннадьевич
  • Гилязев Дмитрий Ильсурович
  • Горбовской Владлен Сергеевич
  • Дементьев Александр Александрович
  • Иванюшкин Анатолий Кириллович
  • Кажан Андрей Вячеславович
  • Кажан Вячеслав Геннадьевич
  • Карпов Евгений Владимирович
  • Новогородцев Егор Валентинович
  • Шаныгин Александр Николаевич
  • Шенкин Андрей Владимирович
  • Фомин Данил Юрьевич
  • Чернышев Сергей Леонидович
RU2753443C1
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Пущин Никита Александрович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2717412C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2693389C1
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Герасимов Сергей Венедиктович
  • Губанова Ирина Анатольевна
  • Чернышев Иван Леонидович
RU2717416C1
Крыло летательного аппарата 2017
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Курилов Владимир Борисович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
  • Губанова Ирина Анатольевна
RU2662595C1
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Сахарова Анна Игоревна
  • Чернышев Иван Леонидович
  • Янин Виталий Викторович
RU2724015C1
САМОЛЕТ МЕСТНЫХ ВОЗДУШНЫХ ЛИНИЙ 2011
  • Вождаев Валерий Викторович
  • Дунаевский Андрей Игоревич
  • Лазарев Валерий Владимирович
  • Теперин Леонид Леонидович
  • Усов Александр Викторович
  • Чернышев Сергей Леонидович
RU2482013C2
МОТОГОНДОЛА ДВИГАТЕЛЯ НА КРЫЛЕ ЛЕТАТЕЛЬНОГО АППАРАТА 2015
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Ковалев Владимир Ефимович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2614870C1
Крыло летательного аппарата 2017
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Герасимов Сергей Венедиктович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
  • Янин Виталий Викторович
RU2662590C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2686794C1

Иллюстрации к изобретению RU 2 701 291 C1

Реферат патента 2019 года Способ исследования макета ламинаризированной поверхности

Изобретение относится к области натурных и модельных испытаний элементов летательных аппаратов. Способ исследования макета ламинаризированной поверхности, снабженной активной системой ламинаризации, содержит микроперфорированную поверхность и систему отсоса пограничного слоя. Макет устанавливают на самолете-носителе и проводят испытательный полет. Макет ламинаризированной поверхности размещают на верхней поверхности самолета-носителя, имеющего интегральную аэродинамическую компоновку крыло-фюзеляж, в вертикальной плоскости симметрии самолета-носителя, в позиции, совпадающей с его центром масс. Проводят испытательный полет в диапазоне скоростей крейсерского полета магистральных пассажирских самолетов на высотах от 3,0 км до 11,0 км. Обеспечивают стабильность потока на макете и подобие обтекания при натурных числах Рейнольдса за счет достижения крейсерской скорости, равной числу 0,7÷0,85 М. Изобретение направлено на расширение арсенала технических средств. 4 ил.

Формула изобретения RU 2 701 291 C1

Способ исследования макета ламинаризированной поверхности, снабженной активной системой ламинаризации, содержащей микроперфорированную поверхность и систему отсоса пограничного слоя, заключающийся в установке макета на самолете-носителе и проведении испытательного полета, отличающийся тем, что макет ламинаризированной поверхности размещают на верхней поверхности самолета-носителя, имеющего интегральную аэродинамическую компоновку крыло-фюзеляж, в вертикальной плоскости симметрии самолета-носителя в позиции, совпадающей с его центром масс, проводят испытательный полет в диапазоне скоростей крейсерского полета магистральных пассажирских самолетов на высотах от 3,0 км до 11,0 км, обеспечивают стабильность потока на макете и подобие обтекания при натурных числах Рейнольдса за счет достижения крейсерской скорости, равной числу 0,7÷0,85 М.

Документы, цитированные в отчете о поиске Патент 2019 года RU2701291C1

Г.С
БЮШГЕНС и др
ЦАГИ-центр авиационной науки, Москва, НАУКА, 1993, с
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ВОЗДУШНЫХ СУДОВ 2011
  • Кухаренко Николай Иванович
  • Гордеев Тимур Евгеньевич
  • Гордеева Елена Евгеньевна
  • Евстратов Анатолий Романович
  • Собов Алексей Николаевич
  • Рухлядко Андрей Николаевич
RU2460982C1
US 0005111402 A1, 05.05.1992.

RU 2 701 291 C1

Авторы

Барышников Олег Евгеньевич

Вермель Владимир Дмитриевич

Болсуновский Анатолий Лонгенович

Квочур Анатолий Николаевич

Киселев Андрей Филиппович

Медведский Александр Леонидович

Шулепов Дмитрий Викторович

Чернышев Сергей Леонидович

Чернышев Леонид Леонидович

Волков Андрей Викторович

Скоморохов Сергей Иванович

Даты

2019-09-25Публикация

2018-12-18Подача