Способ получения монофазных солей актинидов и устройство для их получения Российский патент 2019 года по МПК G21C3/42 B01D1/22 

Описание патента на изобретение RU2702095C1

Изобретение относится к области ядерной энергетики, в частности, к способам получения монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива.

Известны способы промышленного получения монофазных порошков солей актинидов путем соосаждения соединений из растворов, таких, как оксалаты, полиуранаты или карбонаты. Все эти способы включают операции фильтрации, промывки осадков на фильтре и последующую их сушку в соответствующей атмосфере [Collins, Emory D, Voit, Stewart L, and Vedder, Raymond James «Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials», United States: 2011, web. doi:10.2172/1024695]. Общим недостатком осадительных методов является образование больших объемов маточных и промывных растворов в виде РАО, требующих утилизации.

Для исключения указанных недостатков разработан способ по использованию прямой сушки и денитрации азотнокислого раствора актинидов с помощью микроволнового нагрева [OTeruhiko NUMAO, Hiroshi NAKAYASHIKI, Nobuyuki ARAI, Susumu MIURA, Yoshiharu TAKAHASHI «Results of Active Test of Uranium - Plutonium Co-denitration Facility at Rokkasho Ryprocessing Plant», Global 2007, Boise, Idaho, September 9-13, 2007, 238-244].

Данный способ включает в себя ряд таких последовательных операций:

1. Концентрирование смешанного раствора и его сушка при 120°С

2. Разложение (денитрация) расплава солей при 150°С

3. Кальцинация и отгонка остаточной влаги при 250°С и выше

4. Прокалка смеси и ее окисление.

Недостатками данного способа являются его многостадийность, необходимость перемещения емкости со смесью из одной печи в другую и требование дополнительного размола образующегося спека.

В качестве прототипа выбран способ получения твердых растворов актинидов [RU 2494479, опубликован 27.09.2013], согласно которому, азотнокислый раствор нитратов актинидов предварительно подогревают до 90°С, затем добавляют муравьиную кислоту в соответствующей пропорции, обеспечивая мольное соотношение нитрат иона-муравьиная кислота (1:3)-(1:4). Реакционная смесь плавно в течение 2 часов подвергается сушке при 120°С на воздухе. Анализ методом РФА подтвердил образование монофазной смеси формиатов актинидов (уранила и плутония). После прокаливания смеси формиатов при 400°С на выходе, согласно данным РФА, получается твердый раствор смешанных оксидов (U, Pu)O2.

К недостаткам способа по прототипу следует отнести опасность предварительного смешения и выдержки при повышенных температурах азотнокислых растворов актинидов с концентрированной муравьиной кислотой. Их взаимодействие протекает по схеме:

2HNO3+2НСООН→NO+NO2+2CO2+3H2O

2HNO3+3HCOOH→2NO+3CO2+4H2O

Из-за автокаталитического характера этих реакций может произойти неконтролируемое развитие процесса с образованием взрывоопасной газовой смеси, вследствие чего, после смешения компонентов процесс сушки реакционной смеси необходимо вести плавно до 2-х часов, что делает способ периодичным и малопроизводительным.

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в создании способа и устройства для производства монофазных сухих порошков солей актинидов, позволяющих, при компактности и простоте устройства, получать сухие порошки солей актинидов за одну стадию, при этом, обеспечивая повышение производительности, химической и ядерной безопасности процесса.

Для достижения указанного технического результата предложен способ получения монофазных порошков солей актинидов, который включает подачу азотнокислого актинидсодержащего раствора и муравьиной кислоты в цилиндрический обогреваемый реактор, измельчение полученного порошка, его выгрузку, отличающийся тем, что азотнокислый актинидсодержащий раствор и муравьиную кислоту непрерывно дозируют в верхнюю зону реактора, причем смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора, при этом последовательно происходят процессы денитрации, образования соответствующих соединений, их сушка и измельчение, а также сбор самотеком сухих солей актинидов в бункере.

Согласно способу азотнокислый раствор с актинидами и муравьиную кислоту дозируют непрерывно в мольном соотношении нитрат-иона к формиат-иону (1:4,3)-(1:4,5), а температуру теплообменной поверхности поддерживают равной 140±5°С.

Также с целью достижения указанного технического результата предложено устройство для получения монофазных порошков солей актинидов. Предлагаемое устройство содержит вертикальный роторно-пленочный реактор, снабженный обогревателем и штуцерами для ввода реагентов и отвода отходящие газов, внутри которого расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями. Штуцер ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата для уменьшения подсоса холодного воздуха во внутрь его и снабжен обогревателем.

Кроме того:

- ротор выполнен сварным с четырьмя лопастями, причем зазор между кромкой лопасти и стенкой составляет 0,5-1,5 мм;

- штуцер в виде тройника для подачи растворов и штуцер для отвода отходящей паро-газовой смеси расположены в верхней части реактора выше края лопастей.

Для осуществления способа используют ядерно- и взрыво-безопасное устройство, которое показано на фигуре 1, и содержит вертикальный цилиндрический реактор (1), обогреваемый нагревателем (2), штуцер в виде тройника (3) для раздельной подачи растворов и штуцер (4) для отвода паро-газовой смеси. Реактор (1) содержит ротор (5) с распределительным диском и лопастями, приемный бункер (6), снабженный нагревателем (7).

Использование предлагаемого способа получения монофазных солей актинидов и предлагаемого устройства для их получения обеспечивает:

- короткое время пребывания реагентов, дозируемых непрерывно, в условиях теплового воздействия с одновременным глубоким упариванием досуха, следствием чего является повышение производительности и безопасности процесса;

- компактность устройства и простота конструкции позволяет при необходимости его разобрать для осмотра и промывки внутренних поверхностей;

- ядерная безопасность обеспечивается за счет минимизации количества ядерных материалов в тонкой пленке внутри аппарата при масштабировании процесса и использовании растворов с высоким содержанием актинидов.

Способ осуществляется следующим образом:

азотнокислый актинидсодержащий раствор и муравьиная кислота с помощью насосов дозаторов подаются раздельно в реактор (1) через штуцер (3), который находится выше нагревателя (2), на диск ротора (5). Реакционная смесь под действием центробежной силы при вращении ротора (5) сбрасывается с диска ротора на нагретую поверхность реактора (1). Лопасти ротора (5) непрерывно перемешивают реакционную смесь по мере ее продвижения сверху вниз по теплообменной поверхности, обеспечивая получение и сбор самотеком сухих солей актинидов в бункере (6), снабженным нагревателем (7), и парогазовой смеси, которую отводят из реактора (1) через штуцер (4).

Пример 1.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:3,6. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 145°С. Порошок сыпался в приемный бункер равномерно. По данным РФА порошок состоит из двух кристаллических фаз: 50 мас.% формиата гидрата (CH2O5U) и 50 мас.% водного формиата (C2H2O6U⋅H2O). Дифрактограмма порошка, полученного по примеру 1, представлена на фигуре 2, где: - соединение со структурой CH2O5U; - соединение со структурой C2H2O6U⋅Н2О.

Пример 2.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подаются раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,0. Температура на стенке реактора - 140°С, температура на стенке приемного бункера - 130°С. Порошок сыпался в приемный бункер равномерно. По данным РФА порошок состоит из двух кристаллических фаз: 20 мас.% формиата гидрата (CH2O5U) и 80 мас.% водного формиата (C2H2O6U⋅Н2О). Дифрактограмма порошка, полученного по примеру 2, представлена на фигуре 3, где: - соединение со структурой CH2O5U; - соединение со структурой C2H2O6U⋅H2O.

Пример 3.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,3. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 160°С. Порошок сыпался в приемный бункер равномерно. По данным РФА монофазный порошок состоит из 100 масс. % водного формиата (C2H2O6U⋅Н2О). Дифрактограмма порошка, полученного по примеру 3, представлена на фигуре 4, где: - соединение со структурой C2H2O6U⋅H2O. Фото полученного порошка представлено на Фиг. 5.

Пример 4.

Азотнокислый раствор в 0,845 молярной HNO3 с концентрацией по урану 91,1 г/л, по торию 9,0 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,5. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 160°С. Порошок сыпался в приемный бункер равномерно и по данным РФА представлял собой соединение со структурой водного формиата и формулой (С2Н2О6(U,Th)⋅H2O). Дифрактограмма порошка, полученного по примеру 4, представлена на фигуре 6, где: - соединение со структурой C2H2O6U⋅Н2О.

Похожие патенты RU2702095C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДЫХ РАСТВОРОВ ОКСИДОВ АКТИНИДОВ 2012
  • Семенова Надежда Андреевна
  • Красников Леонид Владиленович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
RU2494479C1
СПОСОБ ПОЛУЧЕНИЯ ИНДИВИДУАЛЬНЫХ И СМЕШАННЫХ ОКСИДОВ МЕТАЛЛОВ 2013
  • Семенова Надежда Андреевна
  • Красников Леонид Владиленович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
RU2543086C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА 2015
  • Куляко Юрий Михайлович
  • Винокуров Сергей Евгеньевич
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Мясоедов Борис Федорович
  • Маликов Дмитрий Андреевич
  • Травников Сергей Сергеевич
  • Зевакин Евгений Александрович
  • Шадрин Андрей Юрьевич
  • Двоеглазов Константин Николаевич
RU2603359C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА 2013
  • Козырев Анатолий Степанович
  • Галата Андрей Александрович
  • Твиленёв Константин Алексеевич
  • Шамин Виктор Иванович
  • Тинин Василий Владимирович
  • Мурлышев Артём Петрович
  • Зюзин Александр Васильевич
RU2554636C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА 2013
  • Куляко Юрий Михайлович
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Мясоедов Борис Федорович
  • Федосеев Александр Михайлович
  • Бессонов Алексей Анатольевич
  • Шадрин Андрей Юрьевич
  • Виданов Виталий Львович
  • Винокуров Сергей Евгеньевич
RU2542317C2
СПОСОБ КАТАЛИТИЧЕСКОЙ ДЕНИТРАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2015
  • Апальков Глеб Алексеевич
  • Смирнов Сергей Иванович
  • Жабин Андрей Юрьевич
RU2593163C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, ВКЛЮЧАЮЩЕГО ТВЕРДЫЙ РАСТВОР ДИОКСИДА УРАНА И ДИОКСИДА ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ДРУГОГО АКТИНИДА И/ИЛИ ЛАНТАНИДА 2014
  • Питер-Солдани Гийом
  • Гранжан Стефан
  • Абрахам Франсис
RU2662526C2
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННОГО ТОПЛИВА, СОДЕРЖАЩЕГО УРАН И ПО МЕНЬШЕЙ МЕРЕ, ОДИН АКТИНИД И/ИЛИ ЛАНТАНИД С ИСПОЛЬЗОВАНИЕМ КАТИОНООБМЕННОЙ СМОЛЫ 2009
  • Пикар Себастьен
  • Мохтари Хамид
  • Жобелен Изабель
RU2516282C2
СПОСОБ ПОЛУЧЕНИЯ НИТРАТОВ АКТИНИДОВ 2009
  • Безносюк Василий Иванович
  • Бондин Владимир Викторович
  • Бычков Сергей Иванович
  • Гаврилов Петр Михайлович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
  • Ревенко Юрий Александрович
  • Рябкова Надежда Валентиновна
  • Федоров Юрий Степанович
  • Хаперская Анжелика Викторовна
  • Шадрин Андрей Юрьевич
RU2446493C2
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА 2010
  • Бейрахов Андрей Григорьевич
  • Ильин Евгений Григорьевич
  • Куляко Юрий Михайлович
  • Мясоедов Борис Фёдорович
  • Самсонов Максим Дмитриевич
  • Трофимов Трофим Иванович
RU2446107C1

Иллюстрации к изобретению RU 2 702 095 C1

Реферат патента 2019 года Способ получения монофазных солей актинидов и устройство для их получения

Изобретение относится к области ядерной энергетики, в частности к получению монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива. Способ получения монофазных порошков солей актинидов включает непрерывное дозирование азотнокислого актинидсодержащего раствора и муравьиной кислоты в верхнюю зону цилиндрического обогреваемого реактора. Смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора. Устройство для получения монофазных порошков солей актинидов включает вертикальный роторно-пленочный реактор, снабженный нагревателем, штуцеры для ввода реагентов и для отвода парогазовой фазы. Внутри реактора расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями. Штуцер для ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата и снабжен нагревателем. Изобретение позволяет при компактности и простоте устройства получать сухие монофазные порошки солей актинидов за одну стадию, при этом обеспечивает повышение производительности, химической и ядерной безопасности процесса. 2 н. и 4 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 702 095 C1

1. Способ получения монофазных порошков солей актинидов, включающий подачу азотнокислого актинидсодержащего раствора и муравьиной кислоты в цилиндрический обогреваемый реактор, измельчение полученного порошка, его выгрузку, отличающийся тем, что азотнокислый актинидсодержащий раствор и муравьиную кислоту непрерывно дозируют в верхнюю зону реактора, причем смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора, при этом последовательно происходят процессы денитрации, образования соответствующих соединений, их сушка и измельчение, а также сбор самотеком сухих солей актинидов в бункере.

2. Способ по п. 1, отличающийся тем, что актинидсодержащий раствор и муравьиную кислоту дозируют раздельно и непрерывно в мольном соотношении нитрат-ион и формиат-ион (1:4,3)-(1:4,5);

3. Способ по п. 1, отличающийся тем, что поддерживают температуру теплообменной поверхности 140±5°С.

4. Устройство для получения монофазных порошков солей актинидов, включающее вертикальный роторно-пленочный реактор, снабженный нагревателем, штуцерами для ввода реагентов и для отвода парогазовой фазы, внутри которого расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями, отличающийся тем, что штуцер для ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата и снабжен нагревателем.

5. Устройство по п. 4, отличающееся тем, что ротор выполнен сварным с четырьмя лопастями, причем зазор между кромкой лопасти и стенкой составляет 0,5-1,5 мм.

6. Устройство по п. 4, отличающееся тем, что штуцер в виде тройника для подачи растворов и штуцер для отвода отходящей парогазовой смеси расположены в верхней части реактора выше края лопастей.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702095C1

СПОСОБ ПОЛУЧЕНИЯ ТВЕРДЫХ РАСТВОРОВ ОКСИДОВ АКТИНИДОВ 2012
  • Семенова Надежда Андреевна
  • Красников Леонид Владиленович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
RU2494479C1
Роторно-пленочный испаритель 2018
  • Кукоба Константин Викторович
  • Коптелова Анна Викторовна
RU2668920C1
Приспособление к катушке вращательного бурового станка, служащее для натяжения каната 1933
  • Оганесов Ш.Х.
SU40912A1
Роторный пленочный испаритель 1988
  • Мужилко Алексей Александрович
  • Голияд Николай Никифорович
  • Курилова Елена Болеславовна
  • Лихолат Николай Акимович
SU1560251A1
WO 03037303 A1, 08.05.2003
US 4271127 A, 02.06.1981.

RU 2 702 095 C1

Авторы

Алой Альберт Семенович

Самойлов Сергей Евгеньевич

Кольцова Татьяна Ивановна

Металиди Михаил Михайлович

Рябков Дмитрий Викторович

Безносюк Василий Иванович

Щукин Владимир Сергеевич

Абашкин Андрей Юрьевич

Даты

2019-10-04Публикация

2018-12-25Подача