Изобретение относится к нефтегазодобывающей промышленности, в частности к способам ограничения водопритока в обводненных коллекторах.
Известен способ изоляции водопритока в скважине (патент RU №2272891, МПК Е21В 33/138, опубл. 27.03.2006 в бюл. №9), включающий закачку в пласт гелеобразующей композиции, содержащей полимер акриламида с молекулярной массой не более 1 млн а.е.м. и степенью гидролиза не более 0,5%, водного раствора ацетата хрома. Дополнительно гелеобразующая композиция содержит регулятор гелеобразования, в качестве которого используют слабые органические кислоты. В качестве указанного полимера акриламида используют неионогенный полимер акриламида АК-631 марки Н-50.
Недостатком известного способа является низкая эффективность, так как в условиях низкотемпературных скважин (20-400С) использование гелеобразующей композиции на основе неионогенного полимера акриламида со степенью гидролиза не более 0,5% увеличивает время гелеобразования до пяти суток, что приводит к уходу гелеобразующей композиции из зоны тампонирования и формированию в пласте геля с малой механической прочностью, и как следствие - к неудовлетворительным результатам при выполнении водоизоляционных работ, а также к увеличению стоимости работ.
Наиболее близким по технической сущности является способ изоляции водопритока в скважине (патент RU №2272899, МПК Е21В 43/22, опубл. 27.03.2006 в бюл. №9), включающий закачку в пласт гелеобразующей композиции, содержащей водорастворимый полимер полиакриламида (ПАА), ацетат хрома и воду. Закачивается гелеобразующая композиция в виде суспензии, при этом растворение ПАА в гелеобразующей композиции происходит в стволе скважины. Для выравнивания проницаемостной неоднородности в поровом коллекторе выбирают гелеобразующую композицию на основе ПАА со средними молекулярными характеристиками (3-30 млн а.е.м.), обладающую длительным периодом гелеобразования и относительно низкими прочностными свойствами. Для выравнивания проницаемостной неоднородности трещиноватых коллекторов и изоляции водопритока в скважины выбирают гелеобразующую композицию на основе ПАА с низкой молекулярной массой (0,5-3 млн а.е.м.), обладающую высокими прочностными свойствами. Повышение прочности образующегося полимерного геля обеспечивают вводом в гелеобразующую композицию одного из наполнителей (мел, алюмосиликатные микросферы, древесная мука, сапропель, тальк и др.).
Недостатками известного способа являются низкая эффективность и малая продолжительность эффекта от применения способа изоляции водопритока в скважине. В связи с тем, что гелеобразующую композицию закачивают в скважину в виде суспензии, происходит неполное растворение ПАА в гелеобразующей композиции, что приводит к формированию в пласте полимерного геля с недостаточной прочностью, не выдерживающего перепады давления, существующие в пласте, что снижает эффективность изоляции из-за миграции ПАА по пласту.
Кроме того, вследствие закачки в пласт гелеобразующей композиции в виде суспензии на основе ПАА или гелеобразующей композиции в виде суспензии на основе ПАА и наполнителя не происходит образования однородной гомогенной гелеобразующей композиции, что ведет к налипанию частиц нерастворенного ПАА и наполнителя к поверхности нефтенасыщенных интервалов пласта или к поверхности насосно-компрессорных труб (НКТ), что ухудшает их фильтрационные свойства, приводя к технологическим осложнениям.
Из практики известно, что ПАА с низкой степенью анионности (не более 0,5%) медленно растворяются как в пресной, так и в минерализованной воде - от 60 до 180 мин и более, в связи с этим полного растворения в скважинных условиях не происходит, и поэтому наиболее часто ПАА закачивают в виде суспензии, и для достижения приемлемого технологического эффекта при закачке гелеобразующей композиции в виде суспензии требуется больший расход ПАА.
Техническими задачами изобретения являются повышение эффективности изоляции водопритока и увеличение продолжительности эффекта от применения способа за счет использования однородной гомогенной гелеобразующей композиции с хорошими фильтрационными свойствами и образования прочного полимерного геля непосредственно в зоне изоляции водопритока, а также увеличения стойкости изолирующего полимерного геля к перепадам давления.
Технические задачи решаются способом изоляции водопритока в скважине, включающим закачку в пласт гелеобразующей композиции, содержащей водорастворимый полимер полиакриламида - ПАА, ацетат хрома и воду.
Новым является то, что производят последовательную закачку гелеобразующей композиции на основе ПАА с высокой молекулярной массой и гелеобразующей композиции на основе ПАА с низкой молекулярной массой, при этом гелеобразующая композиция на основе ПАА с высокой молекулярной массой содержит следующее соотношение реагентов, мас. ч.:
гелеобразующая композиция на основе ПАА с низкой молекулярной массой содержит следующее соотношение реагентов, мас. ч.:
причем объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой составляет 75-85%, а гелеобразующей композиции на основе ПАА с низкой молекулярной массой - 15-25% от суммарного объема закачиваемых гелеобразующих композиций.
Реагенты, применяемые в заявляемом способе:
ПАА с низкой молекулярной массой представляет собой порошок с молекулярной массой 1-3 млн а.е.м. со степенью анионности (гидролиза) 8-20%;
ПАА с высокой молекулярной массой представляет собой порошок с молекулярной массой 5-12 млн а.е.м. со степенью анионности (гидролиза) 10-30%;
ацетат хрома представляет собой водный раствор плотностью 1280-1300 кг/м3 с массовой долей ацетата хрома в пределах 49-52%, показатель активности ионов водорода рН=3-4, массовая доля нерастворимых в воде веществ не более 0,1%;
вода пресная или близкая к пресной плотностью 1000-1070 кг/м3. Применение в качестве воды любой из указанной плотности приводит к одному техническому результату.
Сущность способа заключается в том, что последовательно закачивают гелеобразующие композиции на основе ПАА с высокой молекулярной массой и ПАА с низкой молекулярной массой с предварительным растворением ПАА перед закачкой в скважину. Благодаря перемешиванию ПАА до закачивания в скважину в течение 15-25 мин происходит образование прочного полимерного геля непосредственно в зоне изоляции в отличие от наиболее близкого аналога, где гелеобразующая композиция закачивается в виде суспензии ПАА, в результате чего не происходит образования прочного полимерного геля.
Закачка гелеобразующей композиции на основе ПАА с высокой молекулярной массой увеличивает глубину охвата пласта за счет низкой вязкости и более длительного времени гелеобразования композиции - от 24 до 48 ч. Последующая закачка гелеобразующей композиции на основе ПАА с низкой молекулярной массой увеличивает стойкость изолирующего экрана к перепадам давления и повышает его структурно-механические свойства за счет более короткого времени гелеобразования композиции - от 18 до 36 ч. При этом объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой включает 75-85%, а гелеобразующей композиции на основе ПАА с низкой молекулярной массой - 15-25% от суммарного объема закачиваемых гелеобразующих композиций из расчета радиуса создаваемого изоляционного экрана в пласте от 2 до 7 м, что обеспечивает высокую изолирующую способность создаваемого экрана. Данное процентное соотношение объемов закачиваемых гелеобразующих композиций повышает эффективность изоляции водопритока, увеличивает продолжительность эффекта от применения способа и увеличивает стойкость изолирующего полимерного геля к перепадам давления. Гелеобразующие композиции, содержащие ПАА с высокой и низкой молекулярной массой, а также ацетат хрома в качестве гелеобразователя, образуют сшитый во всем объеме гелеобразующих композиций полимерный гель.
Способ осуществляют в следующей последовательности.
В скважине заблаговременно определяют приемистость изолируемого интервала пласта с использованием стандартной техники, применяемой при капитальном ремонте скважин, определяют суммарный объем закачиваемых гелеобразующих композиций из расчета радиуса создаваемого изоляционного экрана от 2 до 7 м. Готовят две гелеобразующие композиции из расчета: объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой 75-85% и объем гелеобразующей композиции на основе ПАА с низкой молекулярной массой 15-25% от суммарного объема закачиваемых гелеобразующих композиций. При этом соотношение реагентов в гелеобразующей композиции на основе ПАА с высокой молекулярной массой составляет, мас. ч.:
Соотношение реагентов в гелеобразующей композиции на основе ПАА с низкой молекулярной массой составляет, мас. ч.:
Принцип приготовления закачиваемых гелеобразующих композиций аналогичен.
Во время набора воды в одну из емкостей установки КУДР при постоянном перемешивании подают расчетное количество ПАА. Перемешивание осуществляют в течение 15-25 мин. Затем при постоянном перемешивании в водный раствор ПАА подают расчетное количество ацетата хрома. Причем процесс приготовления и закачивания гелеобразующей композиции осуществляется непрерывно, в одной смесительной емкости установки КУДР проводят приготовление, из второй емкости в это же время закачивают в скважину уже готовую гелеобразующую композицию.
Закачивают гелеобразующую композицию на основе ПАА с высокой молекулярной массой через колонну НКТ в изолируемый интервал. Далее последовательно закачивают гелеобразующую композицию на основе ПАА с низкой молекулярной массой. Затем закачанный суммарный объем гелеобразующих композиций продавливают в пласт. Продавку гелеобразующей композиции производят технологической жидкостью в объеме, равном объему колонны НКТ и дополнительно 0,5-1,5 м3. Далее оставляют скважину под остаточным давлением на время образования полимерного геля в течение 24-48 ч. После этого производят промывку скважины со спуском колонны НКТ до забоя. Осваивают и запускают скважину в работу.
Для подтверждения эффективности предложения провели испытания композиций на прочность при температуре 22±2°С. Испытания проводили следующим образом: в капиллярную трубку диаметром 6 мм и длиной 3 м заливали гелеобразующую композицию до тех пор, пока композиция не начинала выходить из трубки, и оставляли ее на гелеобразование. Далее полученный гель выдавливали под давлением и рассчитывали градиент давления сдвига. Результаты испытаний приведены в таблице.
Как видно из таблицы, у гелеобразующих композиций по предлагаемому способу (№№1-3) значение градиента сдвига значительно выше, чем у гелеобразующей композиции по наиболее близкому аналогу (приготовленной в виде суспензии, №№5-7) на основе ПАА с низкой молекулярной и высокой молекулярной массами, что говорит о более высокой прочности и стойкости к перепадам давления у изолирующего полимерного геля по предлагаемому способу.
Уменьшение массового содержания применяемых в гелеобразующих композициях ПАА с молекулярной массой 5-12 млн а.е.м. менее 0,3 мас. ч., ПАА с молекулярной массой 1-2,5 млн а.е.м. менее 1,7 мас. ч. и ацетата хрома менее 0,15 мас. ч. не приводит к образованию прочного полимерного геля (№4).
Примечание * - вода плотностью 1070 кг/м3, ** - вода плотностью 1050 кг/м3, а в остальных случаях вода плотностью 1000 кг/м3;
** - объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой 75-85% и объем гелеобразующей композиции на основе ПАА с низкой молекулярной массой 15-25% от суммарного объема закачиваемых гелеобразующих композиций установлен из опыта промысловых работ.
Увеличение массового содержания в гелеобразующей композиции на основе ПАА с молекулярной массой 5-12 млн. а.е.м. более 0,5 мас. ч. и ацетата хрома более 0,20 мас. ч., в гелеобразующей композиции на основе ПАА с молекулярной массой 1-2,5 млн а.е.м. более 4 мас. ч. и ацетата хрома более 0,6 мас. ч. нецелесообразно с экономической точки зрения из-за высокой стоимости реагентов и технологической точки зрения из-за высокой вязкости гелеобразующих композиций, что ведет к технологическим трудностям при закачке гелеобразующих композиций, кроме того, такие гелеобразующие композиции при закачке не проникают в пористую среду.
Приведенные результаты свидетельствуют о том, что по предлагаемому способу обеспечивается повышение эффективности изоляции обводненных коллекторов за счет увеличения прочности полимерного геля.
Предлагаемый способ изоляции водопритока в скважине обеспечивает повышение эффективности изоляции водопритока и увеличение продолжительности эффекта от применения способа за счет образования прочного полимерного геля непосредственно в зоне изоляции водопритока и увеличения стойкости изолирующего полимерного геля к перепадам давления.
название | год | авторы | номер документа |
---|---|---|---|
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В СКВАЖИНУ (ВАРИАНТЫ) | 2018 |
|
RU2703598C1 |
Способ ограничения водопритока в добывающих нефтяных скважинах и выравнивания профиля приемистости, снижения приемистости в нагнетательных скважинах | 2022 |
|
RU2797766C1 |
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКА В ВЫСОКОТЕМПЕРАТУРНЫХ ПЛАСТАХ | 2004 |
|
RU2272891C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНЕ | 2007 |
|
RU2347897C1 |
СПОСОБ ВЫБОРА ПОЛИМЕРНОЙ ГЕЛЕОБРАЗУЮЩЕЙ КОМПОЗИЦИИ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ И ВОДОИЗОЛЯЦИОННЫХ РАБОТ | 2004 |
|
RU2272899C1 |
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНЫХ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩИХ СКВАЖИНАХ | 2015 |
|
RU2597593C1 |
ТАМПОНАЖНЫЙ ПОЛИМЕРНЫЙ СОСТАВ ДЛЯ ВЫСОКИХ ТЕМПЕРАТУР | 2020 |
|
RU2754527C1 |
Способ получения гелеобразующей композиции для изоляции водопритоков в скважину | 2023 |
|
RU2825087C1 |
СПОСОБ РАЗРАБОТКИ ОБВОДНЕННОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 2018 |
|
RU2693101C1 |
Способ разработки неоднородного нефтяного пласта | 2019 |
|
RU2738544C1 |
Изобретение относится к нефтегазодобывающей промышленности, в частности к способам ограничения водопритока в обводненных коллекторах. Способ включает закачку в пласт гелеобразующей композиции, содержащей водорастворимый полимер полиакриламида - ПАА, ацетат хрома и воду. При этом производят последовательную закачку гелеобразующей композиции на основе ПАА с высокой молекулярной массой и гелеобразующей композиции на основе ПАА с низкой молекулярной массой. При этом гелеобразующая композиция на основе ПАА с высокой молекулярной массой содержит 0,3-0,5 мас.ч. ПАА с молекулярной массой 5-12 млн а.е.м., 0,15-0,20 мас.ч. ацетата хрома, 100 мас.ч. воды. При этом гелеобразующая композиция на основе ПАА с низкой молекулярной массой содержит 1,7-4 мас.ч. ПАА с молекулярной массой 1-2,5 млн а.е.м., 0,15-0,6 мас.ч. ацетата хрома и 100 мас.ч. воды. Причем объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой составляет 75-85%, а гелеобразующей композиции на основе ПАА с низкой молекулярной массой - 15-25% от суммарного объема закачиваемых гелеобразующих композиций. Техническим результатом является повышение эффективности изоляции водопритока и увеличение продолжительности эффекта от применения способа за счет использования однородной гомогенной гелеобразующей композиции с хорошими фильтрационными свойствами и образования прочного полимерного геля непосредственно в зоне изоляции водопритока, а также увеличения стойкости изолирующего полимерного геля к перепадам давления. 1 табл.
Способ изоляции водопритока в скважине, включающий закачку в пласт гелеобразующей композиции, содержащей водорастворимый полимер полиакриламида - ПАА, ацетат хрома и воду, отличающийся тем, что производят последовательную закачку гелеобразующей композиции на основе ПАА с высокой молекулярной массой и гелеобразующей композиции на основе ПАА с низкой молекулярной массой, при этом гелеобразующая композиция на основе ПАА с высокой молекулярной массой содержит следующее соотношение реагентов, мас.ч.:
гелеобразующая композиция на основе ПАА с низкой молекулярной массой содержит следующее соотношение реагентов, мас.ч.:
причем объем гелеобразующей композиции на основе ПАА с высокой молекулярной массой составляет 75-85%, а гелеобразующей композиции на основе ПАА с низкой молекулярной массой - 15-25% от суммарного объема закачиваемых гелеобразующих композиций.
СОСТАВ ДЛЯ РЕГУЛИРОВАНИЯ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ | 1994 |
|
RU2071555C1 |
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКОВ В ТРЕЩИНОВАТЫХ КАРБОНАТНЫХ КОЛЛЕКТОРАХ | 2014 |
|
RU2571474C1 |
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В СКВАЖИНУ | 2004 |
|
RU2277573C1 |
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА С ПРИМЕНЕНИЕМ ПОЛИМЕР-ДИСПЕРСНОГО СОСТАВА | 2016 |
|
RU2627502C1 |
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА | 2014 |
|
RU2541973C1 |
WO 2007093761 A1, 23.08.2007. |
Авторы
Даты
2019-10-24—Публикация
2018-11-14—Подача