СИСТЕМА, СПОСОБ И КОМПЬЮТЕРНЫЙ ПРОГРАММНЫЙ ПРОДУКТ ДЛЯ УПРАВЛЕНИЯ ВОЗДУШНЫМИ ФИЛЬТРАМИ Российский патент 2019 года по МПК B01D46/00 F24F11/00 F24F3/16 

Описание патента на изобретение RU2704944C1

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе, способу и компьютерному программному продукту для управления воздушными фильтрами структуры воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку.

Уровень техники

Множество промышленных установок требуют большой подачи всасываемого воздуха, например, чтобы поддерживать процесс горения или чтобы охлаждать промышленную установку во время работы. Желательно фильтровать всасываемый воздух в целях удаления различных частиц и/или газообразного вещества и т.п., которые могут содержаться в воздухе, и, таким образом, обеспечивать более оптимальное качество предварительно обработанного всасываемого воздуха. С этой целью, структуры промышленных фильтров могут быть предусмотрены во впускном отверстии для воздушного потока. Фильтры размещаются так, что всасываемый воздух, как правило, проходит через последовательность фильтров, чтобы устранять загрязнения; загрязнения, которые в ином случае могут вызвать повреждение, которое уменьшит ожидаемый срок службы и производительность промышленной установки.

Как может быть понятно, фильтры в таких структурах постепенно накапливают вещество из воздуха, и когда это вещество накапливается на фильтре, сопротивление потоку воздуха через фильтр увеличивается. Структуры промышленных фильтров забиваются частицами, улавливаемыми в воздушных фильтрах, а также посредством окружающих условий, таких как туман, дождь, снег и т.п. Забивание может уменьшать эффективность фильтрации и работы, в то же время увеличивая общее падение давления. Увеличение падения давления через структуру фильтров подразумевает потерю давления всасываемого воздуха, которая может влиять на работу и производительность промышленной установки.

В типичной структуре промышленных фильтров множество воздушных фильтров размещаются в последовательном порядке. Первый фильтр обычно является фильтром грубой очистки, выполненным с возможностью устранять более крупные частицы в воздухе. Увеличение падения давления через такой фильтр грубой очистки может быть незначительным. Промежуточный фильтр может быть выполнен с возможностью защищать впускное отверстие для воздушного потока от среднеразмерных частиц. Качество воздуха, достигающего промышленной установки, например турбины, определяется посредством использования фильтра тонкой очистки, выполненного с возможностью собирать частицы меньших размеров, например, соляных частиц. Проблемы с забиванием являются особенно выраженными с фильтрами тонкой очистки, где скопление мелких частиц может изменять качественные характеристики фильтра таким образом, что подача воздуха в принимающую промышленную установку может быть уменьшена, приводя в результате к снижению эффективности работы или требованию большей энергии для принимающих вентиляторов, чтобы избегать такого снижения эффективности работы. В некоторых системах вентиляции не допускается возможность изменения потока к принимающей установке, таким образом, требуется увеличенная мощность для вентиляторов при сниженной пропускной способности в фильтрах.

Силовые установки с турбиной внутреннего сгорания, например, газотурбинные силовые установки, являются примерами промышленных установок, которые требуют большой подачи всасываемого воздуха, чтобы поддерживать процесс горения. Другие примеры, заслуживающие внимания, являются турбинными компрессорными станциями или турбинными механическими приводными устройствами. Для того чтобы защищать турбину внутреннего сгорания от загрязненного воздуха с частицами пыли, солью и другими загрязнениями, которые могут повреждать лопатки компрессора или части оборудования силовой установки, структуры воздушных фильтров предусматриваются во впускном отверстии для воздушного потока в турбину сгорания.

Фильтр имеет некоторый срок службы, в течение которого он функционирует адекватно. Срок службы зависит от различных факторов, таких как плотность частиц в воздухе, расход воздуха и т.д. Существуют затраты, подразумеваемые при замене фильтра. Эти затраты могут содержать различные части, такие как затраты на сам фильтр, затраты на транспортировку фильтра, затраты на работу, требуемую для замены фильтра, или другие затраты на охрану окружающей среды, такие как зона влияния двуокиси углерода и т.д. С точки зрения затрат на фильтр, фильтры должны использоваться настолько долго, насколько возможно, пока их технический срок службы не подойдет к концу, например, во время, когда потеря давления через фильтр приводит в результате к недостаточной подаче воздуха в поддержку процесса горения. Исторически, производительность воздушных фильтров в промышленных применениях, например, в связи с силовыми установками, главным образом, оценивалась относительно эффективности (способности отделения) и потери давления (падения давления) без принятия во внимание аспектов затрат на замену фильтра. Однако, проблема при попытке получить выгоду от полного технического срока службы фильтра заключается в том, что увеличившееся забивание фильтра и связанная с этим потеря давления привносят повышенный расход энергии во время работы. Существуют известные способы определения затрат на повышенный расход энергии вследствие работы с забившимся фильтром.

US6009404 раскрывает способ и устройство для ориентированного на затраты наблюдения за работой структуры фильтров. Множество датчиков используется для получения информации, уместной для определения рабочего состояния фильтра. Предусматривается блок оценки, в котором информация, собранная в датчиках, обрабатывается и используется для определения эксплуатационных затрат, ассоциированных с определенным рабочим состоянием фильтра.

SE537506 описывает способ определения оптимального времени эксплуатации фильтра в системе вентиляции для того, чтобы экономить затраты и оставлять настолько малую зону влияния двуокиси углерода, насколько возможно. Способ основывается на получении информации о воздействии на окружающую среду для производства нового фильтра, информации о воздействии на окружающую среду от использования текущего фильтра и информации, уместной для определения рабочего состояния фильтра. Оптимальный срок службы для фильтра в системе вентиляции определяется на основе этой информации. Таким образом, предоставляется анализ затрат на период эксплуатации, в котором аспекты охраны окружающей среды принимаются во внимание.

В то время как упомянутый предшествующий уровень техники предоставляет системы поддержки решения для определения оптимального времени эксплуатации фильтра для конкретного типа фильтра в данной прикладной задаче, оптимальное время эксплуатации фильтра основывается на оценках текущих условий в конкретной промышленной установке. Текущие условия могут быть установлены с высокой точностью, но существует недостаток фактических данных для непрерывной работы структур фильтров, и оценки будущих рабочих состояний промышленной установки могут быть довольно ненадежными. Когда рассматривается сценарий турбины внутреннего сгорания, главной проблемой при использовании фильтра с неадекватным рабочим состоянием является не увеличение расхода энергии для работы турбины внутреннего сгорания, а уменьшение выходной мощности турбины. Влияние такого уменьшения выходной мощности турбины является настолько значительным, что даже довольно умеренное снижение рабочего состояния фильтра может повлечь за собой высокую потерю производительности для владельца силовой установки. Другой проблемой для владельца силовой установки является то, что замена фильтра может требовать приостановки функционирования на время, необходимое для замены фильтра.

По вышеописанным причинам, существует необходимость улучшать координированное управление воздушными фильтрами и предоставлять точные оценки операционных данных для структуры воздушных фильтров в промышленной установке.

Сущность изобретения

Целью настоящего изобретения является улучшение управления воздушными фильтрами. В частности, целью настоящего изобретения является улучшение управления воздушными фильтрами структуры воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку и предоставление точных оценок операционных данных для структуры воздушных фильтров в промышленной установке.

Предложенные решения предоставляют возможность улучшения управления воздушными фильтрами, в котором улучшенные оценки технического срока службы, предполагаемого срока службы и затраты на период эксплуатации формируются, и в котором операторы могут получать улучшенное понимание затрат на замену фильтра в сравнении с затратами на поддержание фильтра в работоспособном состоянии, когда пропускная способность фильтра начала ухудшаться.

Эта цель достигается посредством системы, способа и компьютерного программного продукта для управления воздушными фильтрами, которые раскрываются в независимых пунктах формулы изобретения.

Описание представляет вариант осуществления системы, в котором система содержит устройства воздушных фильтров и станцию управления воздушными фильтрами. Каждое устройство воздушного фильтра предусмотрено в структуре воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку; структура воздушных фильтров содержит по меньшей мере один фильтрующий носитель, приспособленный для устранения дисперсного вещества и/или присутствующего в воздухе молекулярного загрязнения, AMC, из воздушного потока, принимаемого во впускном отверстии для воздушного потока. Каждое устройство воздушного фильтра содержит набор датчиков, выполненных с возможностью сбора данных датчиков, представляющих рабочее состояние структуры воздушных фильтров, микропроцессор, выполненный с возможностью определения информации о рабочем состоянии для структуры воздушных фильтров на основе собранных данных датчиков, и блок связи, выполненный с возможностью передачи информации о рабочем состоянии. Станция управления воздушными фильтрами содержит блок связи, выполненный с возможностью принятия информации о рабочем состоянии от множества устройств воздушных фильтров, и пользовательский интерфейс для выбора структуры воздушных фильтров. Станция управления воздушными фильтрами также содержит схему обработки, выполненную с возможностью оценки ожидаемого срока службы для выбранной структуры воздушных фильтров на основе информации о рабочем состоянии, принятой от устройства воздушного фильтра, предусмотренного в выбранной структуре воздушных фильтров, и информации о рабочем состоянии, принятой от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

Входные данные от множества взаимно независимых устройств воздушных фильтров обеспечивают улучшения в координированном управлении воздушными фильтрами и в достоверности оценок, формируемых относительно затрат на период эксплуатации структуры воздушных фильтров для конкретной промышленной установки. Как будет понятно, доступ в централизованном применении к достоверным данным о периоде эксплуатации для структуры воздушных фильтров обеспечивает достоверную оценку будущих рабочих условий для структуры воздушных фильтров, лучше информированное решение на стороне оператора, чтобы выполнять замены в структуре воздушных фильтров, и способность поставщика воздушных фильтров прогнозировать необходимость поддержания в работоспособном состоянии заменяемых блоков воздушных фильтров в помещениях оптовой базы для продажи или распространения.

Согласно аспекту изобретения система принимает данные по меньшей мере от одного устройства воздушного фильтра, предусмотренного в структуре воздушных фильтров во впускном отверстии для воздушного потока в другую промышленную установку, отличного от устройства воздушного фильтра выбранной структуры воздушных фильтров.

Способность основывать прогнозы в станции управления воздушными фильтрами на входных данных от множества устройств воздушных фильтров, включающих в себя устройства воздушных фильтров, находящиеся на различных участках соответствующих промышленных установок, обеспечивает преимущество предоставления возможности достоверной оценки на основе значимо существенного объема данных для достоверного использования оценки. Ограниченный доступ к измеренным данным датчиков, уместным для структуры воздушных фильтров конкретной структуры воздушных фильтров, подразумевает, что достоверность оценок может быть низкой. Кроме того, доступ к достоверным данным, представляющим показатели измерений, выполненных во время управления воздушными фильтрами, предоставляет возможность более быстрого формирования оценок в реальном времени.

Согласно другому аспекту изобретения, набор датчиков содержит один или более датчиков расхода, датчиков влажности, датчиков концентрации пыли в окружающем воздухе и датчиков падения давления.

Набор датчиков, содержащий датчики различных чувствительных способностей, обеспечивает исчерпывающее представление качественных характеристик фильтров и качественных характеристик окружающего воздуха. Использование множества датчиков, измеряющих различные аспекты, имеющие влияние на воздушный поток к принимающей промышленной установке, обеспечивает преимущество улучшенного понимания рабочих условий для промышленной установки и причины этих рабочих условий.

Согласно другому аспекту изобретения, станция управления воздушными фильтрами дополнительно выполнена с возможностью принятия данных о производительности для промышленных установок, соответствующих соответствующим структурам воздушных фильтров, и оценки затрат на период эксплуатации на основе оцененного ожидаемого срока службы и данных о производительности для промышленной установки выбранной структуры воздушных фильтров.

Доступ к данным о производительности предоставляет преимущество в том, что затраты на период эксплуатации структуры воздушных фильтров могут быть основаны как на затратах на замену фильтров, так и затратах, получаемых от влияния структуры воздушных фильтров на производительность промышленной установки. Следовательно, решение о замене или условие установки воздушного фильтра могут быть основаны на правильном понимании экономических последствий замены или поддержания в рабочем состоянии структуры воздушных фильтров со временем.

Согласно аспекту изобретения, оценка срока службы также основывается на данных о производительности, принятых от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

Следовательно, настоящее изобретение обеспечивает сбор данных от структур воздушных фильтров, предусмотренных в промышленных установках, выполняющих аналогичные операции и испытывающих аналогичные рабочие условия. Доступ к большему набору релевантных данных обеспечивает улучшения в оценках операционных данных и затрат.

Согласно аспекту изобретения, данные о производительности получаются посредством устройства воздушного фильтра промышленной установки выбранной структуры воздушных фильтров. Полученные данные о производительности затем передаются станции управления воздушными фильтрами. Согласно другому аспекту, пользовательский интерфейс для ручного или автоматического предоставления данных о производительности предусматривается в системе. Пользовательский интерфейс обеспечивает преимущество предоставления возможности обратной связи для связанных с производительностью данных, которые могут быть сопоставлены с функциональностью фильтра.

Согласно другому аспекту изобретения, ожидаемый срок службы выбранной структуры воздушных фильтров основывается на линии тренда падения давления в устройстве воздушного фильтра.

Согласно другому аспекту изобретения, линия тренда падения давления в устройстве воздушного фильтра вычисляется из сопоставления данных датчика от одного или более датчиков падения давления и данных датчика по меньшей мере одного датчика расхода, датчика концентрации пыли в окружающем воздухе и/или датчика влажности.

Сопоставление данных датчика от датчика концентрации пыли в окружающем воздухе и от одного или более датчиков падения давления фильтра вместе с данными датчика от датчика расхода обеспечивает преимущества в том, что данные датчиков от устройств воздушных фильтров, имеющих аналогичные рабочие условия, могут быть определены, в то время как данные датчиков от других устройств воздушных фильтров могут быть исключены из процесса формирования оценки.

Вышеописанное преимущество также справедливо, когда линия тренда падения давления в устройстве воздушного фильтра вычисляется из сопоставления данных датчика по меньшей мере одного датчика влажности вместе с данными датчика от датчика расхода и данными датчика от одного или более датчиков падения давления фильтра. Опять же, данные датчиков от датчиков, имеющих аналогичные рабочие условия, могут быть установлены, в то время как данные датчиков от других устройств воздушных фильтров, менее релевантных для целей оценки ожидаемого срока службы фильтра в некотором рабочем окружении, исключаются.

Изобретение также представляет вариант осуществления способа, выполняемого в станции управления воздушными фильтрами вышеописанной системы для управления воздушными фильтрами и всех разновидностей этой системы. Способ содержит прием информации о рабочем состоянии от множества устройств воздушных фильтров и прием запроса, через пользовательский интерфейс, для выбранной структуры воздушных фильтров устройства воздушного фильтра. Оценка ожидаемого срока службы выбранной структуры воздушных фильтров предоставляется на основе информации о рабочем состоянии, принятой от устройства воздушного фильтра выбранной структуры воздушных фильтров, и информации о рабочем состоянии, принятой от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

Изобретение также представляет вариант осуществления компьютерной программы, относящийся к компьютерной программе, содержащей компьютерный программный код, который инструктирует систему для управления воздушными фильтрами выполнять вышеописанный способ, когда выполняется.

Вариант осуществления способа и вариант осуществления компьютерной программы предоставляют преимущества, ранее обсужденные для варианта осуществления системы.

Краткое описание чертежей

Вышеупомянутое будет понятно из последующего более конкретного описания примерных вариантов осуществления, когда иллюстрируется на сопровождающих чертежах, на которых аналогичные ссылочные символы ссылаются на одинаковые части повсюду на различных видах. Чертежи необязательно начерчены по масштабу, вместо этого упор делается на иллюстрации примерных вариантов осуществления.

Фиг.1 является примерным видом воздуховпускного отверстия в промышленную установку;

Фиг.2 является примерным видом структуры воздушных фильтров, содержащей устройство датчика воздушного фильтра;

Фиг.3a является блок-схемой устройства воздушного фильтра;

Фиг.3b является блок-схемой станции управления воздушными фильтрами;

Фиг.4 является блок-схемой для системы управления воздушными фильтрами;

Фиг.5 является блок-схемой последовательности операций примерных этапов способа, выполняемых в устройстве воздушного фильтра;

Фиг.6 является блок-схемой последовательности операций примерных этапов способа, выполняемых в станции управления воздушными фильтрами;

Фиг.7a,b являются примерными видами пользовательского интерфейса, иллюстрирующими примерный ввод и вывод в системе для управления воздушными фильтрами.

Подробное описание изобретения

Аспекты настоящего изобретения будут описаны более полно далее в данном документе со ссылкой на сопровождающие чертежи. Устройства и способ, раскрытые в данном документе, могут, однако, быть реализованы во множестве различных форм и не должны истолковываться как ограничиваемые аспектами, изложенными в данном документе. Аналогичные номера на чертежах ссылаются на аналогичные элементы на всем протяжении документа. Терминология, используемая в этом документе, представлена только с целью описания конкретных аспектов изобретения и не предназначена ограничивать изобретение. Использование в данном документе единственного числа также предполагает множественное число в той же степени, если в контексте явно не изложено иное.

Фиг.1 иллюстрирует примерный вид впускного отверстия 1 для воздушного потока в промышленную установку 2, например, в турбину внутреннего сгорания, которая механически приводит в действие электрический генератор в турбинной силовой установке, в турбинной компрессорной станции или в турбинном механическом приводном устройстве. Окружающий воздух подается в промышленную установку 2 через воздуховпускное отверстие 3. Несмотря на то, что он легко доступен, проблема с подачей окружающего воздуха заключается в том, что окружающий воздух содержит по меньшей мере некоторые доли вещества, которое может быть загрязняющим. Подача окружающего воздуха в промышленную установку, следовательно, влечет за собой подачу загрязняющего вещества. Использование окружающего воздуха может быть более или менее проблематичным в зависимости от окружающей среды, где промышленная установка находится. Для ситуации установки с турбиной внутреннего сгорания, близко к густонаселенной области с высокой степенью загрязнения, мелкие частицы, постоянно находящиеся в воздухе, могут быть втянуты в камеру сгорания турбины и оказывать вредные воздействия на долговременную работу турбины. Одна или более структур 4 воздушных фильтров во впускном отверстии для воздушного потока в турбину промышленной установки предусматривают средство преодоления проблем, ассоциированных с использованием окружающего загрязненного воздуха.

Как описывается на Фиг.1, структура 4 воздушных фильтров позиционируется во впускном отверстии 1 для воздушного потока в промышленную установку 2. Описываемая структура 4 воздушных фильтров содержит три блока 5a-c воздушных фильтров, с изменяющимися качественными характеристиками фильтров, например, блок 5a воздушного фильтра грубой очистки более низкого класса фильтрации, блок 5b промежуточного воздушного фильтра и блок 5c тонкой очистки, приспособленный для фильтрации частиц очень малых размеров. Это означает, что более крупные вещества, такие как, например, насекомые или частицы песка могут быть захвачены блоком фильтра грубой очистки, более близким к воздуховпускному отверстию 3, в то время как мелкие частицы, такие как соль и находящееся в воздухе молекулярное загрязнение, AMC, удаляются из воздушного потока в находящемся ниже по потоку блоке фильтра. Каждый блок 5a-c воздушного фильтра имеет верхнюю по потоку поверхность, направленную в сторону воздуховпускного отверстия 3, и нижнюю по потоку поверхность, направленную в сторону промышленной установки 2, под которыми подразумевается то, что верхняя по потоку поверхность является стороной блока фильтра, которой первой достигает воздушный поток, а нижняя по потоку поверхность находится на стороне, где воздушный поток покидает блок фильтра после прохождения через фильтрующий носитель в блоке фильтра. Также возможны другие структуры 4 воздушных фильтров, например, структуры 4 воздушных фильтров, содержащие блоки фильтров, расположенные в V-образной конфигурации с пиком, обращенным к входящему воздушному потоку, и структура воздушных фильтров, содержащая любое число блоков 5a-c фильтров. Окружающий воздух подается в промышленную установку 2 через впускное отверстие 1 для воздушного потока. Каждый блок 5a,b,c фильтра структуры фильтров представляет отдельный этап фильтрации с особыми характеристиками относительно чувствительности к забиванию и изменениям в падении давления.

При эксплуатации, загрязнения в окружающем воздухе устраняются в процессе фильтрации. Предполагается, что загрязнения удерживаются в структуре 4 воздушных фильтров, в то время как очищенному воздуху предоставляется возможность проходить в промышленную установку 2, например, турбину. Результатом фильтрации и удержания загрязнений в блоках фильтров является то, что эти блоки 5a-c фильтров будут, в конечном счете, нуждаться в замене вследствие забивания от упомянутых загрязнений.

Структуры 4 воздушных фильтров предусматривают замену блоков 5a-c фильтров. Однако, несмотря на попытки предоставлять возможность легкой замены фильтров, службы замены фильтров обычно требуют ограничений в работе промышленной установки во время замены, оказывая негативное влияние на производительность промышленной установки. В дополнение к потере производительности, замена фильтра также ассоциируется с затратами на аппаратные средства фильтра и затратами на обслуживание для выполнения услуги по замене фильтра. Анализ затрат на период эксплуатации часто встречается при настройке программ замены фильтров с целью планировать замены фильтров, так что они выполняются прежде истечения технического срока службы, в то же время увеличивая до максимума экономический срок службы.

Производительность блоков 5a-c фильтров в структуре 4 воздушных фильтров определяется на основе способности отделения и изменений в потере/падении давления через блок фильтра. В то время как способность отделения может поддерживаться в забитом фильтре, засорение будет неизбежно приводить в результате к увеличению потери давления через фильтр, что, в свою очередь, будет ухудшать эффективность турбины внутреннего сгорания. Технические приемы оценки производительности воздушного фильтра являются хорошо известными; с помощью датчиков для определения потери давления и способности отделения. Решения предшествующего уровня техники включают в себя оборудование датчиков, установленное в структуре воздушных фильтров или поблизости от верхней по потоку или нижней по потоку поверхности структуры воздушных фильтров и приспособленное для доставки данных датчиков операторской станции в промышленной установке, например, силовой установке. Оборудование датчиков может включать в себя один или более чувствительных элементов датчиков, выполненных с возможностью получать такие данные датчиков как расход воздуха, влажность и падение давления фильтра. Данные датчиков обрабатываются в схеме обработки поблизости от чувствительных элементов датчиков или на операторской станции. Однако, недостатком этих известных применений является то, что оценки являются довольно неточными и могут оставлять оператора в сомнении относительно затрат и преимуществ замены фильтра, а также предоставляют небольшое пространство для оператора, чтобы улучшать будущие оценки фильтров.

Фиг.2 является примерным видом структуры 4 воздушных фильтров согласно аспекту настоящего изобретения. Возвращаясь снова к Фиг.1, структура 4 воздушных фильтров конфигурируется, чтобы вставляться во впускное отверстие для воздушного потока в промышленную установку, например, силовую установку с турбиной внутреннего сгорания, как описано на Фиг.1. Структура воздушных фильтров содержит по меньшей мере один блок фильтра, но может, конечно, включать в себя любое число блоков 5a,b,c фильтров или ступеней, как описано в отношении Фиг.1. Окружающий воздух некоторой влажности и содержащий находящееся в воздухе загрязнение, поступает в структуру 4 воздушных фильтров через воздуховпускное отверстие 3, и воздушный поток проходит через один или более блоков 5a-c фильтров и выходит в промышленную установку. Отфильтрованный воздух подается в промышленную установку, чувствительную к загрязнению, например, от находящегося в воздухе молекулярного загрязнения, AMC, или частиц соли. Согласно аспекту изобретения, может быть предусмотрено множество блоков 5a-c фильтров, включающих в себя фильтр тонкой очистки высокого класса, приспособленный для устранения даже мельчайших частиц, но также чувствительный к засорению. Структур 4 воздушных фильтров конфигурируется, чтобы плотно вставляться в воздуховпускное отверстие 3 в промышленную установку, так что подача воздуха в промышленную установку осуществляется через структуру 4 фильтров и подвергается фильтрации на своем пути в промышленную установку. В дополнение к блокам 5a-c фильтров, приспособленным для устранения дисперсного вещества и/или находящегося в воздухе молекулярного загрязнения, AMC, из воздушного потока, принимаемого во впускном отверстии для воздушного потока, структура воздушных фильтров содержит устройство воздушного фильтра. Обращаясь обратно к Фиг.2, структура воздушных фильтров содержит устройство 22 воздушного фильтра, прикрепленное на верхней по потоку воздухоприемной стороне или нижней по потоку стороне доставки отфильтрованного воздуха структуры 4 воздушных фильтров. Части устройства датчика могут также быть включены в рамки структуры воздушных фильтров. В то время как Фиг.2 описывает устройство воздушного фильтра в прикрепленной позиции, следует понимать, что устройство воздушного фильтра может также управляться как комплексная часть структуры воздушных фильтров. При применении структуры воздушных фильтров с комплексной конфигурацией устройства воздушного фильтра, устройство воздушного фильтра заменяется при замене структуры воздушных фильтров. С конфигурацией, раскрытой на Фиг.2, устройство воздушного фильтра может быть удалено из структуры воздушных фильтров и повторно использовано на заменяющей структуре фильтров. Согласно аспекту изобретения, устройство 22 воздушного фильтра может также быть сконфигурировано, чтобы привносить систему вихрей в воздушный поток, когда содержится в структуре воздушных фильтров, например, в структуре воздушных фильтров на Фиг.2.

Фиг.3a описывает блок-схему устройства 22 воздушного фильтра, сконфигурированного, чтобы содержаться в структуре 4 воздушных фильтров. Устройство воздушного фильтра включает в себя один или дополнительные датчики 31a,b,c, представляющие рабочее состояние структуры воздушных фильтров, например, один или более датчиков падения давления фильтра, датчиков влажности и/или датчиков концентрации пыли в окружающем воздухе, которые могут быть встроены в компактный корпус. Согласно аспектам изобретения различные датчики могут также быть в физически различных местоположениях поблизости от структуры воздушных фильтров, вследствие чего, датчики конфигурируются, чтобы передавать данные датчиков принимающему устройству 22 воздушного фильтра. Согласно дополнительному аспекту изобретения, устройство датчика воздушного фильтра дополнительно конфигурируется, чтобы принимать данные датчика от средства определения расхода воздуха для определения скорости воздуха воздушного потока, принимаемого во впускном отверстии для воздушного потока. Согласно аспекту изобретения, средство определения расхода воздуха является датчиком вихрей, сконфигурированным, чтобы определять выброс давления, свойственный системе вихрей. Согласно другому аспекту изобретения, средство определения расхода воздуха является датчиком Пито, сконфигурированным, чтобы определять скорость воздуха воздушного потока, принимаемого во впускном отверстии для воздушного потока. Также находится в рамках настоящего изобретения использование других типов анемометров, например, термоанемометров, акустических анемометров или любого другого типа анемометра, который может быть помещен в компактное устройство воздушного фильтра. Устройство датчика воздуха может содержать или принимать данные датчика от счетчика частиц, выполненного с возможностью подсчитывать частицы после фильтра тонкой очистки структуры воздушных фильтров. Число частиц может быть сопоставлено с деградацией двигателя и использовано для прогнозирования будущей деградации.

Согласно аспектам изобретения, устройство 22 воздушного фильтра также содержит микропроцессор 32, выполненный с возможностью обрабатывать данные датчиков, принимаемые от упомянутых датчиков 31a-c, чтобы определять информацию о рабочем состоянии для структуры воздушных фильтров, например, расчетный оставшийся технический срок службы структуры воздушных фильтров или расчетную деградацию фильтра. Блок 33 связи выполнен с возможностью передачи информации о рабочем состоянии принимающей системе управления воздушными фильтрами. Следовательно, устройство воздушного фильтра может быть сконфигурировано как интеллектуальное устройство, включающее в себя схему управления, т.е., микропроцессор, для оперативной обработки возвращенных данных датчиков. Согласно аспекту изобретения, устройство воздушного фильтра может также быть сконфигурировано как система датчиков, включающая в себя множество отдельных датчиков, выполненных с возможностью передавать данные датчиков принимающему блоку обработки. Блок 33 связи в устройстве воздушного фильтра конфигурируется, чтобы передавать определенную информацию о рабочем состоянии принимающей станции управления воздушными фильтрами. Микропроцессор 32 устройства 22 воздушного фильтра выполняется с возможностью принимать или получать данные от набора датчиков 31a-c, например, на непрерывной основе, записывая значения согласно предварительно определенным интервалам времени. Согласно аспектам изобретения, микропроцессор 32 осуществляется на плате печатного монтажа с CPU, который собирает сигналы и записывает данные каждые 20 минут. Микропроцессор выполняется с возможностью осуществлять быстрое преобразование Фурье по одному из выходных сигналов, получая в результате дискретное пиковое значение, которое может быть сохранено в памяти устройства воздушного фильтра и/или передано станции управления воздушными фильтрами. Объем данных равный приблизительно 500 кБ в месяц ожидается для каждого устройства воздушного фильтра, таким образом, также предусматривается память в каждом устройстве воздушного фильтра.

Обработанные данные датчика сообщаются принимающей станции управления воздушными фильтрами, приспособленной для обработки информации о рабочем состоянии, принятой от множества устройств воздушных фильтров, например, множества устройств, расположенных в той же промышленной установке или в отличающихся промышленных установках. Система, содержащая станцию управления воздушными фильтрами и одно или более устройств воздушных фильтров, будет описана в последующем со ссылкой на Фиг.4. Согласно аспекту настоящего изобретения, блок 33 связи может быть любым типом блока беспроводной связи, сконфигурированного для связи машины с машиной, например, с помощью WiFi, GSM, LTE или любого типа подходящей беспроводной технологии. В то время как специально не иллюстрировано, один или более аккумуляторов могут быть предусмотрены в устройстве воздушного фильтра для питания блока связи, датчиков и/или микропроцессора. Устройство воздушного фильтра может также питаться от сети питания, с помощью мощности аккумулятора в целях резервирования или посредством любого сочетания питания от сети и мощности аккумулятора, например, в конфигурации, когда устройство воздушного фильтра конфигурируется посредством дистанционно задействуемых с помощью аккумулятора датчиков и главного компьютера, принимающего данные датчиков.

Фиг.3b описывает блок-схему станции управления воздушными фильтрами. Станция управления воздушными фильтрами содержит блок связи, выполненный с возможностью принятия информации о рабочем состоянии от множества устройств воздушных фильтров, например, через Интернет. Блок связи может быть сконфигурирован как проводная линия связи, предоставляющая доступ к Интернету, или как беспроводная линия связи, обеспечиваемая посредством WiFi или мобильного информационного соединения. Схема обработки станции управления воздушными фильтрами выполнена с возможностью обрабатывать принятую информацию о рабочем состоянии и оценивать ожидаемый срок службы выбранной структуры воздушных фильтров. Схема обработки может содержать схему обработки, предусмотренную в операторской станции, предоставляющей пользовательский интерфейс для станции управления воздушными фильтрами, но схема обработки может также содержать функциональную возможность удаленного сервера, доступного через операторскую станцию, например, из центрального или распределенного серверного окружения, такого как облачное окружение. Фиг.7a описывает примерный вариант осуществления такой операторской станции, сконфигурированной как приложение для компьютера, планшетного компьютера или мобильного устройства, такого как смартфон.

Фиг.4 описывает примерную блок-схему системы для управления воздушными фильтрами, содержащей станцию 42 управления воздушными фильтрами и одно или более устройств 41a,b воздушных фильтров. В системе управления воздушными фильтрами каждое устройство 41a,b воздушного фильтра содержится в структуре воздушных фильтров, сконфигурированной, чтобы помещаться во впускном отверстии для воздушного потока в промышленную установку, например, газотурбинную силовую установку или любой другой тип силовой установки с турбиной внутреннего сгорания. Структура воздушных фильтров содержит по меньшей мере один фильтрующий носитель, приспособленный для удаления взвешенного вещества и/или находящегося в воздухе молекулярного загрязнения, AMC, из воздушного потока, принимаемого во впускном отверстии для воздушного потока. Станция 42 управления воздушными фильтрами системы предусматривается в местоположении, удаленном от одной или более структур воздушных фильтров, например, в среде управления операциями промышленной установки, или как приложение системы программного обеспечения, доступное посредством компьютера, планшета или мобильного устройства. Каждое устройство 41a,b воздушного фильтра структуры воздушных фильтров содержит блок связи для беспроводной передачи данных датчиков станции 42 управления воздушными фильтрами. Например, передача не воспринимается как прямой обмен данными между устройствами, а должна выполняться через промежуточные сетевые структуры, такие как традиционные структуры сетей передачи данных. Беспроводная линия связи иллюстрируется между каждым устройством воздушного фильтра и станцией управления воздушными фильтрами, чтобы иллюстрировать, что по меньшей мере часть обмена данными между устройством воздушного фильтра и станцией управления воздушными фильтрами будет обычно подразумевать беспроводную линию связи.

Устройства 41a,b воздушных фильтров системы предусматриваются в структурах воздушных фильтров, находящихся в различных географических местоположениях, например, в структурах воздушных фильтров, находящихся в различных силовых установках с турбиной внутреннего сгорания, когда рассматривается применение силовой установки. Другие промышленные установки, конечно, также находятся в рамках настоящего изобретения, такие как газовые турбины для компрессорных станций или газовые турбины для судов или морских прикладных задач. Станции управления воздушными фильтрами конфигурируются, чтобы собирать данные от множества устройств воздушных фильтров, предпочтительно устройств воздушных фильтров различных местоположений, и использовать собранные данные для того, чтобы формировать достоверную оценку для оставшегося срока службы и затрат на эксплуатацию соответствующих структур воздушных фильтров в конкретной силовой установке.

Как упомянуто выше, аспекты, относящиеся к забиванию и падению давления, изменяются между блоками фильтров описываемой структуры фильтров. Следовательно, система для управления воздушными фильтрами может содержать набор датчиков, размещенных во множестве устройств воздушных фильтров, содержащих датчики, расположенные в или поблизости от одного или более конкретных блоков фильтров, или единственное устройство воздушного фильтра, содержащее большее число датчиков, расположенных в или поблизости от нескольких блоков фильтров в структуре фильтров. Одно или более устройств воздушных фильтров выполняются с возможностью сбора данных датчиков, представляющих рабочее состояние структуры воздушных фильтров для конкретного промышленного применения. Под датчиком подразумевается устройство, содержащее один или более чувствительных элементов и инструментальное средство, приспособленное для считывания условия, которое должно наблюдаться. Датчики, описанные на Фиг.3a, могут содержать один или более датчиков расхода, датчиков влажности, датчиков концентрации пыли в окружающем воздухе и датчиков падения давления. Выходное значение, полученное от каждого датчика, является выходным значением, соответствующим измеряемому условию, например, расходу воздуха в кубических метрах в час, относительной влажности воздуха в процентах, концентрации пыли в граммах пыли на кубических метр и относительному падению давления dP.

Устройство 41a,b воздушного фильтра, содержащее датчики, включается в структуру воздушных фильтров, например, в каркас структуры воздушных фильтров, на стороне выше по потоку от блока фильтра или на нижней по потоку поверхности блока фильтра. Устройство воздушного фильтра может также принимать дополнительные входные данные от датчиков, расположенных за пределами структуры воздушных фильтров, например, некоторых датчиков, расположенных на стороне выше по потоку от структуры воздушных фильтров, в то время как другие размещаются на нижней по потоку стороне. Как описано, устройства воздушных фильтров могут быть размещены на поверхности или поблизости от двух или более блоков фильтров в структуре фильтров. Таким образом, выходные данные от станции управления воздушными фильтрами могут включать в себя входные данные от множества устройств воздушных фильтров в том же впускном отверстии для воздушного потока, но когда входные данные для соответствующих устройств воздушных фильтров отличаются относительно входных данных датчиков, например, содержания частиц и падения давления. Использование множества устройств воздушных фильтров допускает более детализированную и сбалансированную информацию о состоянии блоков фильтров в структуре фильтров, предоставление информации о том, какой фильтр можно более экономично заменять, а также целесообразные оценки об оставшемся сроке службы текущих блоков фильтров.

Устройства воздушных фильтров выполняются с возможностью собирать данные воздушных фильтров, но могут согласно аспектам изобретения также собирать данные о производительности. Такие данные могут также быть возвращены станции управления воздушными фильтрами непосредственно из операторского окружения промышленной установки.

Обращаясь обратно к Фиг.4, блок-схема описывает систему 40 для управления воздушными фильтрами, содержащую по меньшей мере два устройства 41a,b воздушных фильтров, предусмотренных в структурах воздушных фильтров взаимно независимых впускных отверстий для воздушного потока в соответствующие промышленные установки, и станцию 42 управления воздушными фильтрами. Согласно аспекту изобретения каждое устройство 41a,b воздушного фильтра осуществляется как описано со ссылкой на Фиг.3a. Микропроцессор соединяется с возможностью обмена данными с одним или более датчиками 31a-c, например, датчиком расхода, датчиком температуры и/или влажности, датчиком концентрации пыли в окружающем воздухе и/или по меньшей мере одним датчиком для определения падения давления фильтра через фильтр. Согласно другому аспекту изобретения, каждое устройство 41a,b воздушного фильтра объединяется с соответствующей структурой воздушных фильтров, например, на стороне выше по потоку или ниже по потоку структуры воздушных фильтров.

Согласно аспекту изобретения, каждое устройство 41a,b воздушного фильтра выполняется с возможностью передавать собранные данные на регулярной основе, например, с помощью беспроводной линии 43 связи, в обмене данными между машинами. Даже если блок-схема описывает линию прямой беспроводной связи между каждым устройством 41a,b воздушного фильтра и станцией 42 управления воздушными фильтрами, специалисту в области техники очевидно то, что объекты могут связываться посредством множества беспроводных узлов, так что беспроводная связь используется для доставки данных от устройств воздушных фильтров к принимающей станции управления, а также то, что беспроводные линии связи могут не быть необходимыми в каждом случае передачи данных от каждого устройства 41a,b воздушного фильтра к станции 42 управления воздушными фильтрами. Также следует понимать, что станция управления воздушными фильтрами может включать в себя один или более взаимодействующих объектов, когда пользовательский интерфейс может быть предоставлен, например, как приложение на компьютере, мобильном телефоне или планшете, в то время как фактическая обработка выполняется в облачном окружении, например, посредством взаимодействующих серверов, расположенных в различных местоположениях или в одном и том же географическом местоположении. Что касается случая неудачной передачи, локальное хранение данных до 6 месяцев также предусматривается в устройстве воздушного фильтра. Как упомянуто, устройство воздушного фильтра также содержит память, выполненную с возможностью предоставлять такое локальное хранилище, и может также содержать блок питания или емкость для мощности.

Система 40 для управления воздушными фильтрами содержит множество устройств 41a,b воздушных фильтров и станцию 42 управления воздушными фильтрами. Каждое устройство 41a,b воздушного фильтра предусмотрено в структуре воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку, причем эта структура воздушных фильтров содержит по меньшей мере один фильтрующий носитель, приспособленный для устранения дисперсного вещества и/или присутствующего в воздухе молекулярного загрязнения, AMC, из воздушного потока, принимаемого во впускном отверстии для воздушного потока. Каждое устройство 41a,b воздушного фильтра содержит набор датчиков, т.е. по меньшей мере средство определения расхода для определения скорости воздуха, и предпочтительно также датчики для определения падения давления через структуру воздушных фильтров, содержащую устройство воздушного фильтра, выполненное с возможностью сбора данных датчиков, представляющих рабочее состояние структуры воздушных фильтров. Каждое устройство 41a,b воздушных фильтров дополнительно содержит микропроцессор и блок связи. Станция 42 управления воздушными фильтрами также содержит блок связи, выполненный с возможностью принимать данные датчиков от множества устройств 41a,b воздушных фильтров. Станция управления воздушными фильтрами предоставляет пользовательский интерфейс для выбора структуры воздушных фильтров для устройства 41a воздушного фильтра. Схема обработки станции управления воздушными фильтрами выполняется с возможностью оценки ожидаемого срока службы выбранной структуры 41a воздушных фильтров на основе информации о рабочем состоянии, определенной из данных датчиков, собранных в устройстве 41a воздушного фильтра выбранной структуры воздушных фильтров, и данных датчиков, принятых от одного или более других устройств 41b воздушных фильтров.

Согласно аспекту изобретения, устройство воздушного фильтра содержит один или более следующих датчиков: датчик температуры и влажности, датчик(и) падения давления, датчик пыли в окружающем воздухе и датчик расхода воздуха. Таким образом, устройство воздушного фильтра может предоставлять исчерпывающий набор данных датчиков, требуемых в управлении воздушными фильтрами. Согласно аспекту изобретения, датчик расхода воздуха может определять скорость воздуха с помощью специализированного вихревого расходомера. Датчик давления, установленный обращенным от воздушного потока, используется для определения колебаний давления и частоты этих колебаний. Быстрое преобразование Фурье (FFT) выполняется для входных данных от датчика давления, получая в результате FFT, которое используется для определения основной частоты вихревого потока, вызванного движущимся воздухом. Из этой частоты может быть определена скорость движущегося воздуха.

Входные данные из показателей измерений расхода воздуха могут также быть использованы при вычислении потери давления и тренда потери давления, dP-тренда. dP-тренд зависит от потери давления вследствие пыли, забивающей фильтр, а также потери давления вследствие влажности и дождя. Потеря давления вследствие пыли, забивающей фильтр, может быть сопоставлена с концентрацией пыли (г/м3) и расходом воздуха (м3/ч). Потеря давления вследствие влажности может быть оценена из сопоставления с влажностью.

Выходная мощность промышленной установки, такой как турбина внутреннего сгорания, зависит от воздушного потока в камеру сгорания турбины. Изменение в воздушном потоке будет иметь значительное влияние на выходную мощность турбины внутреннего сгорания; таким образом, существует необходимость нормализовать данные для расхода воздуха.

Согласно принципам настоящего изобретения, структура воздушных фильтров используется в качестве платформы хорошо определенных измерений для измерения широкого диапазона данных датчиков. Компоненты, содержащиеся в устройстве воздушного фильтра, и, следовательно, также в структуре воздушных фильтров, используются, чтобы формировать более точные оценки ожидаемого срока службы на основе очень достоверных данных датчиков.

С точки зрения управления фильтрами концентрация пыли в окружающем воздухе также является значимыми входными данными для оценки выгод/потребностей для замены фильтра. Кроме того, измерение концентрации пыли в окружающем воздухе также предоставляет предпосылку для сопоставительного анализа между различными участками и другим фильтром, т.е. основания управления фильтрами на большем наборе данных, чем тот, который был использован в прикладных задачах управления фильтрами предшествующего уровня. Изобретатели обнаружили, что более точные оценки могут быть сформированы при сборе данных датчиков от множества устройств воздушных фильтров, представляющих одинаковые категории промышленных установок, в центральном хранилище, т.е. станции управления воздушными фильтрами. Таким образом, настоящее изобретение предоставляет средство улучшения оценки ожидаемого срока службы для каждого конкретного устройства воздушного фильтра, а также улучшения оценки затрат на период эксплуатации.

Решения предшествующего уровня техники основываются только на конкретных условиях для блока фильтра, для которого определяется потеря давления, и процесс построения достаточных данных датчиков, чтобы предоставлять возможность точных оценок будущих условий фильтра может оказываться довольно длительным. Изобретатели поняли, что будет возможно улучшать доступ к данным датчиков, предоставляя возможность использования данных датчиков от множества независимых объектов, устройств воздушных фильтров, при оценке срока службы одного или более блоков фильтров структуры воздушных фильтров в промышленной установке, такой как силовая установка с турбиной внутреннего сгорания. Кроме того, изобретатели представили решение для объединения данных, так что такие точные оценки имеются в распоряжении. Согласно аспекту изобретения, данные от устройств воздушных фильтров, находящихся в другой промышленной установке, представляющей тот же тип промышленной установки, могут быть использованы, чтобы улучшать оценку для структуры воздушных фильтров.

Согласно другим аспектам изобретения, изобретение основывается на определении окружающих условий для устройств воздушных фильтров, предоставляющих нескоррелированные данные датчиков, и для использования нормализованных данных датчиков от множества устройств воздушных фильтров, чтобы улучшать оценки ожидаемого срока службы для заданного узла. Проблемой с типичными оценками срока службы фильтра является то, что они выполняются на основе вычисленной в лаборатории пылезадерживающей способности, DHC. Однако изобретатели обнаружили, что фильтр, который может удерживать 100 грамм "лабораторной пыли" перед необходимостью замены, может, в действительности, иметь технический срок службы, подразумевающий нагрузку где-то между 50 и 300 граммами пыли "реального мира". Типично, решения предшествующего уровня для оценки ожидаемого срока службы структуры воздушных фильтров конкретной промышленной установки полагаются на предположение о том, сколько пыли "реального мира" может содержаться в фильтре, но неопределенности такого предположения являются довольно значительными. Посредством определения соотношения между давлением, формируемым в блоке фильтра, в сравнении с пылью на участке, возможно выполнять правильные сравнения между различными типами фильтров и участками и использовать данные от различных типов фильтров и участков при формировании оценки ожидаемого срока службы или затрат на период эксплуатации.

После того как потеря давления вследствие состояния фильтра может быть определена, возможно вычислять, насколько это влияет на производительность промышленной установки, например, уменьшает выходную мощность силовой установки с турбиной внутреннего сгорания, и это может быть представлено в виде денежного выражения, например, в долларовом выражении.

Согласно аспекту изобретения, каждое устройство воздушного фильтра может также включать в себя LED-лампы состояния, которые используются для указания того, что соответствующий блок фильтра нуждается в замене.

Устройства воздушных фильтров используются для сбора данных датчиков, которые передаются станции управления воздушными фильтрами на регулярной основе. Каждый оператор промышленной установки имеет возможность осуществлять доступ к данным, относящимся к условиям его конкретной установки, со станции управления воздушными фильтрами. Согласно аспекту изобретения, интерфейс связи со станцией управления воздушными фильтрами предоставляется посредством веб-сайта, приложения для планшета или приложения для мобильного устройства. Такой пользовательский интерфейс представляется на Фиг.7a. Пользовательский интерфейс может быть доступен оператору промышленной установки, но также поставщику фильтров, так что существует повышенная готовность предоставлять заменяющие фильтры согласно фактическим потребностям вместо соответствия предварительно вычисленной программе замены фильтров. Данные, представляющие ожидаемый срок службы фильтра и ассоциированные затраты на фильтр в течение ожидаемого срока службы, могут быть представлены в графических изображениях. Фиг.7b иллюстрирует графическое представление затрат на период эксплуатации фильтра и затрат, ассоциированных с непрерывной работой ухудшающегося фильтра, т.е. затраты, относящиеся к снижению в выходной мощности от силовой установки. Согласно другим аспектам изобретения, оператор силовой установки может предоставлять дополнительные операционные данные станции управления воздушными фильтрами.

В станции управления воздушными фильтрами собранные данные обрабатываются. Такая обработка предполагает корректировку данных для условий расхода, формирование исторических линий тренда для падения давления, dP, на основе измеренных данных и прогнозирование будущего dP на основе исторических линий тренда. Согласно аспектам изобретения станция управления воздушными фильтрами также преобразует значение падения давления в денежное выражение, чтобы визуализировать снижение в производительности вследствие падения давления.

В интерфейсе связи станции управления воздушными фильтрами конечный пользователь принимает визуальную информацию о времени до необходимости замены фильтра по техническим причинам, т.е. потере давления; времени до замены фильтра, которая рекомендуется по коммерческим причинам; экономии затрат для выполнения замены фильтра на основе коммерческих причин вместо технических причин. Важным аспектом в представлении коммерческих аспектов является ухудшение производительности промышленной установки, например, страдающей от ухудшения воздушного потока в камеру сгорания турбины с внутренним сгоранием.

Фиг.5 описывает блок-схему последовательности операций примерных этапов способа, выполняемых в устройстве воздушного фильтра. Устройство воздушного фильтра конфигурируется, чтобы получать S51 данные датчиков с помощью хорошо известной технологии датчиков. Такие данные датчиков содержат данные датчиков, формируемые в датчиках уровня техники, размещенных на или в структуре воздушных фильтров. С точки зрения системы, изобретение не ограничивается некоторым размещением датчиков, будучи компактным, интеллектуальное устройство воздушного фильтра предоставляет множество преимуществ от точности в измеряемых данных датчиков и от возможности заменять неисправные датчики без задержки. Устройство воздушного фильтра содержит микропроцессор, сконфигурированный, чтобы обрабатывать S52 полученные данные датчиков, чтобы определять информацию о рабочем состоянии, представляющую рабочее состояние структуры воздушных фильтров, где устройство воздушного фильтра находится. Устройство воздушного фильтра передает S53 информацию о рабочем состоянии принимающей удаленной станции управления воздушными фильтрами. Передача обработанных данных датчиков от устройства датчика воздушного фильтра станции управления воздушными фильтрами может по меньшей мере частично выполняться по беспроводной линии связи.

Фиг.6 описывает блок-схему последовательности операций примерного способа, выполняемого в станции управления воздушными фильтрами для управления воздушными фильтрами в системе управления воздушными фильтрами. В самом общем контексте способ содержит прием S61 информации о рабочем состоянии от множества устройств воздушных фильтров. Согласно аспекту изобретения, устройства воздушных фильтров могут также быть выполнены с возможностью принимать S62 данные о производительности, релевантные для промышленной установки, в которой работает структура воздушных фильтров. На дальнейшем этапе станция управления воздушными фильтрами принимает S63 запрос состояния фильтра, релевантный для выбранной структуры воздушных фильтров для одного или более устройств воздушных фильтров в системе управления воздушными фильтрами. Станция управления воздушными фильтрами обрабатывает запрос и оценивает S64 ожидаемый срок службы выбранной структуры воздушных фильтров на основе информации о рабочем состоянии, принятой от соответствующего устройства воздушного фильтра, и информации о рабочем состоянии, принятой от одного или более других устройств воздушных фильтров. На необязательном этапе затраты на период эксплуатации оцениваются на основе оцененного ожидаемого срока службы и данных о производительности для промышленной установки выбранной структуры воздушных фильтров. В оценке затрат на период эксплуатации затраты на замену фильтра, получаемые из оцененного ожидаемого срока службы, могут быть сравнены с операционными затратами, получаемыми из использования структуры воздушных фильтров в промышленных установках, например, затратами, ассоциированными с пониженной выходной мощностью от силовой установки с турбиной внутреннего сгорания при работе с использованием структуры воздушных фильтров, приближающейся к окончанию ее срока службы. Как ранее упомянуто, такая пониженная выходная мощность может получаться в результате пониженного входного потока воздуха, чтобы поддерживать процесс горения.

Запрос принимается S63 через пользовательский интерфейс, доступный оператору промышленной установки, например, оператору силовой установки, и/или обслуживающему персоналу для фильтра или любому другому авторизованному адресату. Оценка ожидаемого срока службы выбранной структуры фильтров может быть выполнена либо при приеме данных в системе, т.е. для любого фильтра в структуре воздушных фильтров, как только новые данные вводятся в систему, либо при приеме запроса, относящегося к ожидаемому сроку службы данной структуры воздушных фильтров. Предпочтительно, ожидаемый срок службы для всех устройств воздушных фильтров, занесенных в список станции управления воздушными фильтрами, непрерывно обновляется, как только новые данные принимаются в системе.

Оценка ожидаемого срока службы выбранной структуры воздушных фильтров предпочтительно выполняется с помощью метамоделирования, такого как модель Кригинга, которая предоставляет возможность оптимизации конструкции в итеративном процессе без чрезмерных вычислительных затрат. Однако, конкретные принципы моделирования для оценки ожидаемого срока службы не являются частью настоящего изобретения, где оценка ожидаемого срока службы может быть получена из использования множества технических способов моделирования.

Фиг.7a описывает пример пользовательского интерфейса для станции управления воздушными фильтрами, в котором по меньшей мере часть программного обеспечения и функциональные возможности обработки станции управления воздушными фильтрами осуществляется на планшете. Фиг.7b описывает пример графического изображения, описывающего операторский аспект, в котором влияние затрат для воздуховпускного отверстия в турбину внутреннего сгорания вычисляется и отображается. Влияние затрат включает в себя увеличения в стоимости топлива, потерю выходной мощности вследствие потери давления в фильтре и затраты на замену фильтра. В то время как затраты на замену фильтра уменьшаются со временем, тренд затрат для производственной потери является противоположным. При наличии доступа к точным оценкам этих затрат и ожидаемого срока службы фильтра возможно вычислять, в реальном времени, наиболее оптимальный интервал замены или улучшения физических свойств фильтра и получать совет по экономии денежных средств, которая может быть получена от следования рекомендации заменить фильтр в данный момент времени.

Согласно аспекту изобретения, станция управления воздушными фильтрами может быть облачным приложением, в котором данные собираются и анализируются с регулярными интервалами, например, раз в день. Каждый потребитель получает логин и пароль, которые предоставляют ему доступ к данным фильтров для некоторых или всех турбин внутреннего сгорания в его парке. Потребитель имеет возможность определять состояние каждого впускного отверстия для воздушного потока в силовые установки с турбиной внутреннего сгорания, технический срок службы структуры фильтров и экономический срок службы для структуры фильтров, т.е. момент времени, когда затраты на поддержание работоспособности фильтра в будущей работе превышают затраты на замену фильтра. Данные от станции управления воздушными фильтрами могут также быть доступны поставщикам услуг по замене фильтров, так что они имеют возможность улучшать облуживание относительно продаж фильтров на замену на вторичном рынке, а также предлагать поправки в конфигурациях фильтров на основе исторических данных о производительности.

Настоящее изобретение также относится к компьютерному программному продукту, выполненному с возможностью выполнять описанные выше этапы способа, когда исполняется в системе управления воздушными фильтрами, содержащей множество устройств воздушных фильтров и станцию управления воздушными фильтрами.

Устройство воздушного фильтра и система управления воздушными фильтрами, раскрытые в описании выше, предоставляют преимущество предоставления доступа к дополнительным данным для оценки затрат и выгод от замены фильтра. Кроме того, устройство воздушного фильтра предоставляет доступ к более достоверным данным фильтра, предоставленным системе управления воздушными фильтрами, таким образом, улучшая качество оценок даже больше.

Похожие патенты RU2704944C1

название год авторы номер документа
ДИАГНОСТИКА И ПРОГНОЗИРОВАНИЕ СОСТОЯНИЯ ФИЛЬТРА 2015
  • Пёрсифулл Росс Дикстра
RU2709451C2
Способ и система для информирования о характеристиках работы газовой турбины в реальном времени 2013
  • Фадлун Эвер Авриель
  • Калиди Абдуррахман Абдаллах
  • Сараванаприян Арул
  • Пиери Марко
  • Асхур Осама Найм
RU2627742C2
СПОСОБ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ПРОГНОЗИРОВАНИЯ ОСТАТОЧНОГО РЕСУРСА ФИЛЬТРА ТРАНСПОРТНОГО СРЕДСТВА 2017
  • Джаммусси Хассен
  • Макки Имад Хассан
  • Ландолси Факхреддин
  • Кумар Панкадж
RU2717575C2
Устройство и способ прогнозирования и оптимизации срока службы газовой турбины 2012
  • Де Просперис Роберто
  • Де Систо Паоло
  • Борковски Мацей
RU2617720C2
Способ и система для рекомендации действий оператору 2013
  • Чеччерини Альберто
  • Калиди Абдуррахман Абдаллах
  • Сараванаприян Арул
  • Бьянуччи Давид
  • Пумо Антонио
  • Бетти Алессандро
  • Крочиани Риккардо
  • Асхур Осама Найм
RU2657047C2
СПОСОБЫ И СИСТЕМЫ ДЛЯ ДАТЧИКА КИСЛОРОДА 2014
  • Сурнилла Гопичандра
  • Кларк Тимоти Джозеф
  • Солтис Ричард И.
  • Виссер Якобус Хендрик
  • Хаус Кристофер
RU2653712C2
Вторичная система и способ управления двигателем 2017
  • Джаммусси Хассен
  • Макки Имад Хассан
RU2718388C2
СИСТЕМА И СПОСОБ (ВАРИАНТЫ) ЭКСПЛУАТАЦИИ ЛАЗЕРНОГО ДАТЧИКА ДАВЛЕНИЯ 2016
  • Мартин Дуглас Реймонд
  • Миллер Кеннет Джеймс
RU2717865C2
СПОСОБ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЯ ОТКЛОНЕНИЯ ПАРАМЕТРА РАБОТОСПОСОБНОСТИ ПО МЕНЬШЕЙ МЕРЕ ОДНОГО КОМПОНЕНТА ГАЗОВОЙ ТУРБИНЫ И БЛОК УПРАВЛЕНИЯ ДЛЯ ГАЗОВОЙ ТУРБИНЫ 2015
  • Панов Вили
RU2658869C2
СПОСОБ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ (ВАРИАНТЫ) И СИСТЕМА ДВИГАТЕЛЯ 2012
  • Сурнилла Гопичандра
  • Стайлс Дэн Джозеф
  • Янкович Мрдьян Дж.
  • Буклэнд Джулия Хелен
  • Карник Амей И.
RU2605167C2

Иллюстрации к изобретению RU 2 704 944 C1

Реферат патента 2019 года СИСТЕМА, СПОСОБ И КОМПЬЮТЕРНЫЙ ПРОГРАММНЫЙ ПРОДУКТ ДЛЯ УПРАВЛЕНИЯ ВОЗДУШНЫМИ ФИЛЬТРАМИ

Изобретение относится к системе и способу для управления воздушными фильтрами структуры воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку. Система для управления воздушными фильтрами, в которой каждое устройство воздушного фильтра содержит набор датчиков с возможностью сбора данных, представляющих рабочее состояние структуры воздушных фильтров, микропроцессор с возможностью определения информации о рабочем состоянии для структуры воздушных фильтров на основе собранных данных, и блок связи с возможностью передачи информации о рабочем состоянии, блок связи с возможностью принятия информации о рабочем состоянии от множества устройств воздушных фильтров; пользовательский интерфейс для выбора структуры воздушных фильтров; и схему обработки, выполненную с возможностью оценки ожидаемого срока службы выбранной структуры воздушных фильтров, при этом оцененный ожидаемый срок службы основывается на информации о рабочем состоянии, принятой от устройства воздушного фильтра, предусмотренного в выбранной структуре воздушных фильтров, и информации о рабочем состоянии, принятой от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров. Это позволяет улучшить управление воздушными фильтрами и обеспечить предоставление точных оценок операционных данных для структуры воздушных фильтров. 2 н. и 12 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 704 944 C1

1. Система (40) для управления воздушными фильтрами, содержащая устройства (41а,b) воздушных фильтров и станцию (42) управления воздушными фильтрами, при этом каждое устройство (41а,b) воздушного фильтра предусмотрено в структуре воздушных фильтров во впускном отверстии для воздушного потока в промышленную установку, причем структура воздушных фильтров содержит по меньшей мере один фильтрующий носитель, приспособленный для удаления дисперсного материала и/или находящегося в воздухе молекулярного загрязнения, АМС, из воздушного потока, принимаемого во впускном отверстии для воздушного потока, при этом каждое устройство воздушного фильтра содержит набор датчиков, выполненных с возможностью сбора данных датчиков, представляющих рабочее состояние структуры воздушных фильтров, микропроцессор, выполненный с возможностью определения информации о рабочем состоянии для структуры воздушных фильтров на основе собранных данных датчиков, и блок связи, выполненный с возможностью передачи информации о рабочем состоянии, при этом станция (42) управления воздушными фильтрами содержит блок связи, выполненный с возможностью принятия информации о рабочем состоянии от множества устройств воздушных фильтров; пользовательский интерфейс для выбора структуры воздушных фильтров; и схему обработки, выполненную с возможностью оценки ожидаемого срока службы выбранной структуры воздушных фильтров, отличающаяся тем, что оцененный ожидаемый срок службы основывается на информации о рабочем состоянии, принятой от устройства (41а) воздушного фильтра, предусмотренного в выбранной структуре воздушных фильтров, и информации о рабочем состоянии, принятой от одного или более других устройств (41b) воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

2. Система по п. 1, в которой по меньшей мере одно из одного или более других устройств (41b) воздушных фильтров предусмотрено в структуре воздушных фильтров во впускном отверстии для воздушного потока в другую промышленную установку.

3. Система по п. 1 или 2, в которой набор датчиков содержит один или более датчиков расхода, датчиков влажности, датчиков концентрации пыли в окружающем воздухе и датчиков падения давления.

4. Система по пп. 1-3, в которой станция (42) управления воздушными фильтрами дополнительно выполнена с возможностью принятия данных о производительности для промышленных установок, соответствующих соответствующим структурам воздушных фильтров, и оценки затрат на период эксплуатации на основе оцененного ожидаемого срока службы и данных о производительности для промышленной установки выбранной структуры воздушных фильтров.

5. Система по п. 4, в которой оценка затрат на период эксплуатации также основывается на данных о производительности, принятых от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

6. Система по п. 4 или 5, в которой каждое устройство (41а,b) воздушного фильтра дополнительно выполнено с возможностью получения данных о производительности для промышленной установки соответствующей структуры воздушных фильтров и передачи полученных данных о производительности станции управления воздушными фильтрами.

7. Система по п. 6, в которой данные о производительности принимаются через пользовательский интерфейс.

8. Система по любому из предшествующих пунктов, в которой информация о рабочем состоянии является линией тренда падения давления, dP, в устройстве воздушного фильтра.

9. Система по п. 8, в которой линия тренда падения давления, dP, в устройстве воздушного фильтра вычисляется из сопоставления данных датчика от одного или более датчиков падения давления и данных датчика по меньшей мере одного датчика расхода, датчика концентрации пыли в окружающем воздухе и/или датчика влажности.

10. Система по любому из предшествующих пунктов, в которой промышленная установка является силовой установкой с турбиной внутреннего сгорания, турбинной компрессорной станцией или турбинным механическим приводным устройством.

11. Система по п. 10, в которой данные о производительности представляют выходную мощность силовой установки с турбиной внутреннего сгорания.

12. Способ, выполняемый в станции управления воздушными фильтрами системы (40) для управления воздушными фильтрами по любому из пп. 1-11, включающий этапы, на которых:

принимают (S61) информацию о рабочем состоянии от множества устройств воздушных фильтров, каждое из которых предусмотрено в структуре воздушных фильтров,

принимают (S63) запрос, через пользовательский интерфейс, для выбранной структуры воздушных фильтров устройства воздушного фильтра; и

оценивают (S64) ожидаемый срок службы выбранной структуры воздушных фильтров на основе информации о рабочем состоянии,

отличающийся тем, что информацию о рабочем состоянии принимают от устройства воздушного фильтра, предусмотренного в выбранной структуре воздушных фильтров, и от одного или более других устройств воздушных фильтров, предусмотренных в других структурах воздушных фильтров.

13. Способ по п. 12, дополнительно включающий этапы, на которых:

принимают (S62) данные о производительности для промышленных установок, соответствующих соответствующим структурам воздушных фильтров, и

оценивают (S65) затраты на период эксплуатации на основе оцененного ожидаемого срока службы и данных о производительности для промышленной установки выбранной структуры воздушных фильтров.

14. Способ по п. 12 или 13, в котором оценка ожидаемого срока службы формируется в ответ на прием данных датчиков от множества устройств воздушных фильтров или в ответ на прием запроса для выбранной структуры воздушных фильтров устройства воздушного фильтра.

Документы, цитированные в отчете о поиске Патент 2019 года RU2704944C1

US 2015241318 A1, 27.08.2015
US 2015283491 A1, 08.10.2015
US 2014208942 A1, 31.07.2014
WO 2015042960 A1, 02.04.2015
US 6423118 B1, 23.07.2002
US 2005247194 A1, 10.11.2005
ФИЛЬТР ВОЗДУХОЗАБОРНИКА ТУРБИНЫ 2005
  • Шварц Роберт
RU2390367C2

RU 2 704 944 C1

Авторы

Кон Джошуа

Рингстрем Ричард

Даты

2019-10-31Публикация

2017-02-22Подача