Изобретение относится к металлургии, а именно к радиационно-стойким аустенитным чугунам с шаровидным графитом, и может быть использовано для изготовления крупногабаритных отливок контейнеров хранения и транспортировки отработавшего ядерного топлива.
Известен аустенитный чугун с шаровидным графитом, содержащий углерод, кремний, марганец, никель, медь, хром, ванадий, магний, кальций, церий и железо при следующем соотношении компонентов, мас. %: углерод 2,2-3,0; кремний 2,4-3,2; марганец 3,0-4,0; никель 9,4-11,0; медь 6,5-7,5; хром 0,3-0,5; ванадий 0,01-0,03; магний 0,03-0,05; кальций 0,03-0,05; церий 0,01-0,03; железо остальное.
(RU 2337170, С22С 37/04, опубликовано 27.10.2008)
Однако известный аустенитный чугун с шаровидным графитом при высокой коррозионной стойкости не обладает достаточной способностью поглощать нейтронное излучение, что делает его непригодным для изготовления отливок контейнеров хранения и транспортировки отработавшего ядерного топлива.
Наиболее близким по технической сущности является радиационно-стойкий аустенитный чугун с шаровидным графитом для изготовления отливок корпусов контейнеров хранения и транспортировки отработавшего ядерного топлива. Известный радиационно-стойкий чугун с шаровидным графитом содержит углерод, кремний, марганец, никель, медь, хром, ванадий, магний, кальций, церий, бор, барий, гадолиний, железо и сопутствующий примеси: серу, фосфор, кобальт; при следующих соотношениях компонентов, мас. %: углерод 2,5-3,5; кремний 1,8-2,6; марганец 1,5-2,5; никель 9,4-11,0; медь 6,0-7,0; хром 0,06-0,10; ванадий 0,06-0,10; магний 0,03-0,05; кальций 0,01-0,03; церий 0,01-0,03; бор 0,006-0,10; барий 0,01-0,15; гадолиний 0,6-3,0; сопутствующие примеси: сера 0,004-0,01; фосфор 0,004-0,04; кобальт 0,002-0,12; железо остальное.
(RU 2465363, С22С 37/04, опубликовано 15.08.2011)
Известный радиационно-стойкий чугун обладает высокой коррозионной стойкостью в условиях воздействия радиоактивного облучения, однако может использоваться для отливки изделий простой геометрической формы (корпусов контейнеров для хранения и транспортировки отработавшего ядерного топлива), не требующих значительной последующей механической обработки.
Задачей изобретения и его техническим результатом является создание радиационно-стойкого чугуна с шаровидным графитом, обеспечивающего высокую коррозионную стойкость в условиях воздействия радиоактивного облучения и снижающего трудоемкость последующей механической обработки литья при изготовлении фасонных крупногабаритных изделий, требующих высокой точности конечных геометрических размеров.
Технический результат достигается тем, что радиационно-стойкий чугун с шаровидным графитом для литья контейнеров хранения и транспортировки отработавшего ядерного топлива содержит углерод, кремний, марганец, никель, магний, гадолиний, фосфор, серу и железо при следующем соотношении компонентов, мас. %: углерод 3,6-3,9; кремний 2,0-2,4; марганец 0,15-0,35; никель 0,5-1,0; магний 0,05-0,09; гадолиний 0,25-0,50; фосфор 0,01-0,03; сера 0,010-0,015; железо остальное.
Содержание углерода 3,6-3,9 мас. %, кремния 2,0-2,4 мас. % и марганца 0,15-0,35 мас. % и никеля 0,5-1,0 мас. % достаточно для обеспечения требуемых механических характеристик, а фосфора 0,01-0,03 мас. % - для обеспечения жидкотекучести чугуна.
Содержание гадолиния 0,25-0,50 мас. % в составе чугуна по изобретению достаточно для обеспечения требуемого уровня поглощения им радиационного излучения отработанного ядерного топлива без снижения коррозионной стойкости. Содержание углерода 3,6-3,9 мас. %, кремния 2,0-2,4 мас. % и марганца 0,15-0,35 мас. %, никеля 0,5-1,0 мас. % и фосфора 0,01-0,03 мас. % достаточно для обеспечения требуемых механических характеристик.
Ввод более 0,50% гадолиния в состав предлагаемого чугуна с шаровидным графитом способствует образованию в его металлической основе твердых карбидов, которые существенно повышают его износостойкость и, соотвественно, трудоемкость последующей механической обработки отливок.
Изобретение может быть проиллюстрировано следующим примером.
Выплавку чугуна проводят в индукционных или дуговых электропечах с использованием стандартных шихтовых материалов. После расплавления шихты чугун перегревают до 1450-1470°С, причем сплав гадолиния (30%) с кремнием и никель-магниевую лигатуру кладут на дно разливочного ковша перед выпуском жидкого металла из печи. После обработки расплава с его поверхности скачивают образовавшегося шлака. Результатом является низколегированный ферритный чугун по изобретению, имеющий включения шаровидного графита.
Чугун по изобретению использовали для литья секций контейнера хранения и транспортировки отработавшего ядерного топлива, выполненных в виде цельнолитого цилиндра с центральным цилиндрическим вертикальным отверстием и несколькими вертикальными шестигранными отверстиями высокой точности для размещения тепловыделяющих сборок с отработавшим ядерным топливом. После охлаждения секции контейнера подвергали механической обработке.
В таблице приведены химический состав чугуна по изобретению, а также параметры механической обработки, оцененные по скорости резания, подачи резца и глубины резания. Пункты 1-3 относятся к чугуну по изобретению, а п. 4 - к известному чугуну по наиболее близкому аналогу.
Из представленных данных видно, что чугун по изобретению обеспечивает достижение поставленного результата: снижение трудоемкости механической обработки.
название | год | авторы | номер документа |
---|---|---|---|
РАДИАЦИОННО СТОЙКИЙ АУСТЕНИТНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ | 2011 |
|
RU2465363C1 |
КОНТЕЙНЕР ДЛЯ ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ ОТРАБОТАВШИХ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК РЕАКТОРА ТИПА ВВЭР | 2019 |
|
RU2714122C1 |
ВЫСОКОПРОЧНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ | 2011 |
|
RU2451101C1 |
ВЫСОКОПРОЧНЫЙ ХЛАДОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ | 2019 |
|
RU2715931C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН | 2011 |
|
RU2451099C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН | 2011 |
|
RU2451100C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН | 2011 |
|
RU2465362C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН | 2011 |
|
RU2448183C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ | 2013 |
|
RU2526507C1 |
ВЫСОКОПРОЧНЫЙ ЧУГУН ДЛЯ КОРПУСНЫХ КОНСТРУКЦИЙ СОВРЕМЕННОЙ КОНТЕЙНЕРНОЙ ТЕХНИКИ ПО ТРАНСПОРТИРОВКЕ И ХРАНЕНИЮ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА | 2008 |
|
RU2371506C2 |
Изобретение относится к металлургии, а именно к разработке радиационно-стойкого аустенитного чугуна с шаровидным графитом, и может быть использовано для изготовления крупногабаритных отливок контейнеров хранения и транспортировки отработавшего ядерного топлива. Радиационно-стойкий чугун с шаровидным графитом для литья контейнеров хранения и транспортировки отработавшего ядерного топлива содержит, мас.%: углерод 3,6-3,9; кремний 2,0-2,4; марганец 0,15-0,35; никель 0,5-1,0; магний 0,05-0,09; гадолиний 0,25-0,50; фосфор 0,01-0,03; сера 0,010-0,015; железо - остальное. Чугун характеризуется высокой коррозионной стойкостью в условиях воздействия радиоактивного облучения. Снижается трудоемкость последующей механической обработки литья при изготовлении фасонных крупногабаритных изделий, требующих высокой точности конечных геометрических размеров. 1 табл., 1 пр.
Радиационно-стойкий чугун с шаровидным графитом для литья контейнеров хранения и транспортировки отработавшего ядерного топлива, содержащий углерод, кремний, марганец, никель, магний, гадолиний, фосфор, серу и железо, при следующем соотношении компонентов, мас.%: углерод 3,6-3,9; кремний 2,0-2,4; марганец 0,15-0,35; никель 0,5-1,0; магний 0,05-0,09; гадолиний 0,25-0,50; фосфор 0,01-0,03; сера 0,010-0,015; железо - остальное.
РАДИАЦИОННО СТОЙКИЙ АУСТЕНИТНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ | 2011 |
|
RU2465363C1 |
CN 103757529 A, 30.04.2014 | |||
CN 106119682 A, 16.11.2016 | |||
CN 106367666 A, 01.02.2017 | |||
IN 201500773 A, 03.07.2015. |
Авторы
Даты
2019-11-15—Публикация
2019-05-23—Подача